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Abstract

Responses to rating-scale items are often plagued by biases stemming from content-
responsive faking (such as malingering or socially desirable responding) or content
nonresponsitivity (particularly careless responding). While there is consensus that
response biases can jeopardize the validity of survey measures through a variety of
psychometric issues, their exact effects are yet to be statistically quantified. Leveraging
robustness theory, we study the statistical properties of response biases in survey data.
In particular, we derive bias curves and breakdown values of survey measures, with a
focus on correlational measures due to their key role in factor analyses and structural
equation models. Furthermore, we study how the adverse effects of response biases can
be mitigated by survey design, for instance through the number of answer categories,
number of items in a measure, and construct reliability. We find that already low
prevalence of response biases can render survey measures fundamentally invalid. In
addition, we show how comparatively short survey measures with a balanced number
of negatively-worded items can enhance the robustness of survey measures against
response biases. Furthermore, we provide freely available software in R for computation
and visualization of bias curves in survey measures.
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1 Introduction

Surveys are ubiquitous in scientific fields such as health, psychology, economics, and mar-
keting. However, survey participants may not respond truthfully or accurately, for instance
by inattentive responding (e.g. carelessness) or intentional misrepresentation of oneself (e.g.
socially desirable responding). Such inaccurate responses are called response biases. While
there is widespread empirical evidence that response biases can in some cases be a major
threat to the validity of survey-based research (e.g. Huang et al., 2015; Meade & Craig, 2012;
Paulhus et al., 1995; Topping & O’Gorman, 1997), their exact effects on survey measures
are yet to be statistically quantified.

Leveraging statistical robustness theory, we study the theoretical properties of response
biases in eating-scale survey data. Since many fundamental exploratory and confirmatory
analyses of survey measures are either explicitly or implicitly correlational—such as validity,
reliability, or factor structure—we focus on the statistical effects of response bias on Pearson’s
correlation measure, and additionally on mean and variance. In particular, for each of these
three estimators, we derive bias curves that estimate how much a given level and type of
response bias distorts the estimator of interest when evaluated at survey measures of given
characteristics.

We find that questionnaire designs that are intended to yield high quality of measurement
through high reliability, many answer categories, or many items are most prone to adverse
effects of response bias. In particular, in lengthy questionnaires, already a low prevalence of
careless respondents of about 5% can suffice to reverse research findings. We therefore argue
that instead of maximizing measurement reliability in highly idealized scenarios, one should
use measurements that are reasonably reliable across a large variety of potentially very noisy
scenarios. Specifically, shorter scales are preferred because they have statistical advantages
over lengthier scales when carelessness is present: When response bias is present, shorter
scales yield reasonably accurate measurement, in contrast to lengthier scales. In addition,
shorter scales offer practical advantages such as lower costs, higher convenience, and higher
statistical power as a result of hiring more study subjects due to saved costs.

2 Literature

2.1 Response Bias as a Construct

McGrath et al. (2010) defines response bias as a “consistent tendency to respond inaccurately
to a substantive indicator, resulting in systematic error in prediction”. Nichols et al. (1989)
distinguish between two general types of response bias, content nonresponsitivity (CNR) and
content-responsive faking (CRF).

CNR is defined as responding without regard to item content (Meade & Craig, 2012).
Examples include careless responding (e.g. Meade & Craig, 2012), participant inattention
(Maniaci & Rogge, 2014), and protocol invalidity (Johnson, 2005). CNR is typically charac-
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terized by (near-)random responding (response inconsistency ; Ward & Meade, 2022), such
as choosing answer categories completely at random or a tendency to consistently choose ex-
treme answer categories, and responding according to deterministic patterns, like straightlin-
ing or content-independent patterns like 1-2-3-1-2-3 (response invariability ; Ward & Meade,
2022), and impossibly fast response times (e.g. Bowling et al., 2021b). There is a broad
literature on causes of content-independent responding and the psychology behind it. One
prominent cause is inattention, which may be due to fatigue or boredom in lengthy surveys
(Bowling et al., 2021a; Gibson & Bowling, 2020; Galesic & Bosnjak, 2009). The phenomenon
of inattention is studied extensively in behavioral economics (e.g., DellaVigna, 2009; Gabaix,
2019, and references therein). Another cause of CNR is confusion (e.g., Huang et al., 2012;
Ward & Pond, 2015; Ward et al., 2017), for instance when a participant misunderstands an
item due to ambiguous item wording or insufficient reading comprehension (Nichols et al.,
1989).

Nichols et al.’s (1989) second category of response bias, CRF, refers to strategic re-
sponse behavior with the goal of intentionally misrepresenting oneself. Examples include
malingering (“faking bad”; e.g. Furnham & Henderson, 1982), denying problems to create
an impression of being “normal” (“faking good”; e.g. Furnham & Henderson, 1982), so-
cially desirable responding (Paulhus, 1984), impression management (Schlenker, 1980), and
self-deception (Paulhus, 1986). Successful CRF requires careful, attentive and systematic
content-dependent responding (cf. Holden & Book, 2011; Johnson & Hogan, 2006; Paulhus,
1993), whereas CNR is characterized by content-independent responding.

A third type of response bias that neither seems to match CRF nor CNR stems from
item order, where responses depend on previously given responses (Dillman et al., 2014).
For instance, respondents may use similar thought processes for answering two items that
are seemingly related. We refer to Section 5.2 in Stantcheva (2022) for a detailed review on
such item order effects.

2.2 Prevalence, Effects, and Identification of Response Biases

2.2.1 Prevalence

Content-independent responding due to carelessness is widely prevalent (Bowling et al., 2016;
Curran, 2016; Meade & Craig, 2012; Ward & Pond, 2015; Ward et al., 2017) and suspected
by Ward & Meade (2022) to be present in all survey data. Although estimates of the exact
prevalence vary substantially (e.g., Arthur et al., 2021; Ward & Meade, 2022, and references
therein), Curran (2016); Huang et al. (2012, 2015); Meade & Craig (2012) estimate prevalence
to be generally between 10–15% of survey participants.

Studies on the prevalence of faking are generally focused on high-stake contexts, such
as employment decisions. For instance, Griffith et al. (2007) estimate that between 30%
and 50% of job applicants attempt to generate an inadequately positive impression of them-
selves. Griffith & Converse (2011) conclude from a literature review that a “substantial
portion of [job] applicants fakes personality measures” and estimate the proportion of fakers
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at roughly 30%.1 In general, faking good can be expected in situations in where survey
participants believe they can gain something of personal value from faking (Ellingson, 2011),
particularly when stakes are high (Cao & Drasgow, 2019; Paulhus, 2002). Nevertheless, the
prevalence, degree, reason, and type of faking may vary across populations (Zickar et al.,
2004) and on the individual participant level (Ellingson, 2011; Griffith & McDaniel, 2006).

2.2.2 Effects

There is substantial empirical evidence that content-independent responding can jeopardize
the validity of survey measures through, for instance, lower scale reliability, spurious variabil-
ity, worse model fit, or type I or type II errors in hypothesis testing (Arias et al., 2020; Huang
et al., 2015; Kam & Meyer, 2015; McGrath et al., 2010; Woods, 2006), and already a low
presence of 5–10% of participants who respond carelessly or inattentively can be problematic
for validity (Arias et al., 2020; Credé, 2010; Schmitt & Stults, 1985; Woods, 2006).

Studies on the effects of faking on the validity of survey measures have mixed conclusions,
ranging from faking being a serious threat (Dunnette et al., 1962; Komar et al., 2008; Paulhus
et al., 1995; Topping & O’Gorman, 1997) over being generally not a serious issue (Ellingson
et al., 2001; Hough et al., 1990) to downright being a “non-issue” (Hogan & Hogan, 2007,
in a reference to Hogan et al., 2007). Similarly, for correlational and factor structures, there
is no consensus on whether faking is serious issue (e.g., Topping & O’Gorman, 1997; Schmit
& Ryan, 1993) or not (e.g., Marshall et al., 2005; Smith & Ellingson, 2002). Holden & Book
(2011) suspect that this inconclusiveness might be due to differences in assessment contexts,
associated base rates for faking, criteria used, samples, operationalizations of faking, and
analytical methods. In addition, effects may differ between high-stakes and low-stakes testing
situations (White et al., 2008).

2.2.3 Detection

One can generally distinguish between a priori and post hoc methods for the detection of
biased responses. Post hoc methods are based on statistical analyses on given responses
and are popular in the detection of careless responding. Such methods include consistency
indicators like psychometric antonyms and psychometric synonyms (Meade & Craig, 2012),
longstring indices (Johnson, 2005), multivariate outlier analyses (e.g., Curran, 2016), thresh-
old values for response times (Bowling et al., 2021b), and more recently machine learning
based methods (Schroeders et al., 2022; Welz & Alfons, 2023).2 A priori methods are based
on specific items or even entire scales as part of the questionnaire. Popular items for the
detection of careless responding are self-report items, instructed items, or attention checks

1We refer to Table 3.1 in Griffith & Converse (2011) for an overview of estimates on faking prevalence in
employment decisions.

2Evaluating overviews of methods for the detection of carelessness are provided in Arthur et al. (2021),
Curran (2016), DeSimone et al. (2015), and Ward & Pond (2015).
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(Meade & Craig, 2012). Faking is typically detected via scales designed for measuring specific
manifestations of faking.

3 Methodology

3.1 Robust Statistics

The field of robust statistics is primarily concerned with quantifying the effects of corrupted
data on statistical estimators, and develop estimators that are less susceptible to the adverse
effects of corrupted data.3 An observation is said to be “corrupted” if it follows a different
distribution than the distribution that the data are intended to be sampled from. For
instance, if sampled data are intended to be normally distributed, either by assumption,
modeling choices, or experimental design, an observation that is instead sampled from some
heavy-tailed distribution is seen as corrupted. Hence, one may view corrupted data as a
form of sampling error.

Corrupted data is typically assumed to follow a contaminated distribution Fε, which is
defined as

Fε = (1− ε)F + εH, (1)

where F is the model distribution we intend to sample from, H is the contaminating dis-
tribution that causes sampling error, and constant ε ∈ [0, 1] is the contamination fraction.
For distribution Fε, we sample with probability (1 − ε) from the model distribution, and
with probability ε from the contaminating distribution H. The contamination distribution
model (1) is due to seminal work by Huber (1964), and the contaminating distribution H
is traditionally seen as some unspecified outlier-generating distribution. One therefore often
works with classes of contamination distributions rather than an individual contamination
distribution. For model distribution F and contamination fraction ε, such a class is defined
by

Fε =
{
Fε : Fε = (1− ε)F + εH for any distribution H

}
.

In robust statistics, one is often interested in how some statistical estimator T is affected
by data sampled from a certain distribution, such as the contamination distribution Fε. To
study this, we view the estimator as a statistical functional of data-generating distribution F ,
resulting in a functional T (F ). For example, consider the example of the expectation of F
for some random variable X distributed according to F , being

T (F ) = EF [X] .

Viewing an estimator as a functional enables us to simultaneously study the population
version and empirical version of the estimator. Indeed, in the example of the expectation, let

3For detailed treatments of robust statistics, we refer the interested reader to classic textbooks by Hampel
et al. (1986); Huber & Ronchetti (2009), and Maronna et al. (2018). As an example of a robust estimation
method, Alfons et al. (2022) develop an estimator for mediation analyses that can resist the adverse effects
of outliers.
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X1, . . . , XN be anN -sized random sample from F , and define by F̂N(x) =
1
N

∑N
i=1 1 {Xi ≤ x}

the empirical distribution function obtained from the sample. then, evaluating expectation
T at empirical distribution F̂N yields the sample mean

T
(
F̂N

)
=

1

N

N∑
i=1

Xi.

A derivation of this statement is given Appendix A.
One can use the functional representation of an estimator to study the estimator’s the-

oretical and empirical behavior when evaluated at a contamination distribution Fε (or an
empirical version thereof), for a fixed contamination fraction ε ∈ [0, 1]. For example, a pop-
ular measure of robustness of an estimator is its maximum bias curve. The maximum bias
curve of an estimator is defined by the maximum discrepancy between the estimator evalu-
ated at an uncontaminated distribution F and any contaminated distribution Fε ∈ Fε, for a
fixed fraction of contamination ε. Hence, the maximum bias curve measures the maximum
estimation bias caused by having a fraction ε of samples being corrupted. For example, the
maximum bias curve of the expectation is unbounded for a standard normal model distribu-
tion, meaning that even tiny amounts of contamination can lead to infinite bias. A closely
related measure of robustness is the breakdown value, which is the minimum contamination
fraction required to completely destroy an estimator. What is meant by “completely de-
stroying” depends on the nature of the estimator. In many classical estimators, it means
sending the estimator’s maximum bias to infinity, like in the example of the expectation at
the standard normal distribution. We later return to the notations of maximum bias curve
and breakdown value.

3.2 Setup

In this paper, we are interested in the the robustness properties of the Pearson correlation
coefficient between two discrete ordinal random variables, X and Y . For instance, think
about X and Y as responses to two Likert-type items in a Big 5 personality instrument. A
functional representation of Pearson’s correlation coefficient between X and Y , evaluated at
a bivariate distribution F , is given by

T (F ) :=

CorF [X, Y ] =
CovF [X, Y ]√

VarF [X] VarF [Y ]
=

EF [XY ]− EF [X]EF [Y ]√
EF [X2]− EF [X]2

√
EF [Y 2]− EF [Y ]2

, (2)

see Croux & Dehon (2010). To avoid cumbersome notation, EF [X] represents the marginal
expectation of X at a bivariate distribution F , and analogously for Y . For an N -sized
bivariate sample (X1, Y1), . . . , (XN , YN) from F , evaluating functional T at the sample’s
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empirical distribution F̂N recovers the well-known empirical version of Pearson correlation:

T
(
F̂N

)
= CorF̂N

[X, Y ] =
1
N

∑N
i=1XiYi −XNY N√

1
N

∑N
i=1X

2
i −X

2

N

√
1
N

∑N
i=1 Y

2
i − Y

2

N

,

where XN = 1
N

∑N
i=1 Xi and Y N = 1

N

∑N
i=1 Yi denote the two marginal sample means. A

derivation of this expression is provided in Appendix A.
Throughout this paper, we denote by F the true uncontaminated model distribution of

(X, Y ). We denote the true Pearson correlation between X and Y at their distribution F
by T (F ) = ρ ∈ [−1, 1]. In addition, we assume that X and Y have support {−MX ,−(MX −
1), . . . ,MX − 1,MX} and {−MY ,−(MY − 1), . . . ,MY − 1,MY }, respectively, for some finite
MX ,MY > 0. This assumption is without loss of generality, as we demonstrate in the
following. Suppose that a discrete ordinal variable X ′ has support S ′ = {1, 2, . . . , K}. We
can rescale the support be deducting the central answer category, C, from each element
in S ′, resulting in a random variable X with support S = {1 − C, . . . ,K − C}, and now
set MX = K − C. For example, items with five Likert-type answer categories have original
support region S ′ = {1, 2, 3, 4, 5}, which can be rescaled to S = {−2,−1, 0, 1, 2} by deducting
the central answer category, being 3 in this case.. In this case, the rescaled variable X has
maximum value MX = 2. Note that rescaling a variable’s support region may affect its
moments, which we discuss in detail in Appendix C.

3.3 Main Results

We are now ready to define the maximum bias curve of Pearson’s correlation measure.
Following Raymaekers & Rousseeuw (2021), we distinguish between a maximum upward
and a maximum downward bias in Definition 1.

Definition 1 (Maximum bias curve). At model distribution F and a contamination fraction
ε ∈ [0, 1], the maximum upward and downward bias of Pearson correlation measure T are
respectively defined as

B+(ε, T, F ) = sup
G∈Fε

{
T (G)− T (F )

}
, and

B−(ε, T, F ) = inf
G∈Fε

{
T (G)− T (F )

}
,

where Fε =
{
G : G = (1− ε)F + εH for any distribtion H with same support as F

}
.

The maximum upward bias in Definition 1 takes values in [0, 2], and is maximized by
having contamination push the true correlation at F upwards towards value +1. Conversely,
the downward bias takes values in [−2, 0] and is maximized by pushing correlation downwards
towards value −1. Therefore, maximum upward bias and downward bias are intended for
situations where the true correlation at F is negative and positive, respectively.
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In Definition 1, it is not a necessity to restrict the contamination distributions H in Fε

to have the same support as the model distribution F . For instance, one could even consider
continuous contamination distributions. However, because we are working with discrete
data, we do not consider it meaningful to compare two distributions with different support
regions.

It is useful to define the following functions. For fixed contamination fraction ε ∈ [0, 0.5]
and rating-scale variables X and Y that jointly follow model distribution F , let

mε(X, Y ) = (1− ε)
(
ρ
√
VarF [X] VarF [Y ] + EF [X]EF [Y ]

)
− (1− ε)2EF [X]EF [Y ] ,

mε(X) = (1− ε)
(
VarF [X] + EF [X]2

)
− (1− ε)2EF [X]2 , and,

mε(Y ) = (1− ε)
(
VarF [Y ] + EF [Y ]2

)
− (1− ε)2EF [Y ]2 ,

(3)

where ρ = T (F ) is the Pearson correlation between X and Y at F .
The following proposition derives bias curves for a given type of contamination. The

proof of this proposition and all other mathematical statements in this paper are given in
the appendix.

Proposition 1. For fixed contamination fraction ε ∈ [0, 0.5] and contaminated distribution
G = (1− ε)F + εH ∈ Fε, the bias of Pearson correlation measure T at model distribution F
is given by

T (G)− T (F ) =
CovG [X, Y ]√

VarG [X] VarG [Y ]
− ρ,

where ρ = T (F ), and

CovG [X, Y ] = mε(X, Y )+

ε
(
− (1− ε)EF [X]EH [Y ]− (1− ε)EF [Y ]EH [X] + EH [XY ]− εEH [X]EH [Y ]

)
,

as well as

VarG [X] = mε(X) + ε
(
− 2(1− ε)EF [X]EH [X] + EH

[
X2
]
− εEH [X]2

)
, and,

VarG [Y ] = mε(Y ) + ε
(
− 2(1− ε)EF [Y ]EH [Y ] + EH

[
Y 2
]
− εEH [Y ]2

)
.

Theorem 1. Let X and Y be discrete ordinal random variables with support regions
{−MX , . . . ,MX} and {−MY , . . . ,MY }, respectively. For fixed contamination fraction ε ∈
[0, 0.5], the maximum upward bias of Pearson correlation measure T at model distribution F
is given by

B+(ε, T, F ) =
mε(X, Y ) + εMXMY√

mF,ε(X) + εM2
X

√
mF,ε(Y ) + εM2

Y

− ρ,
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and the maximum downward bias is

B−(ε, T, F ) =
mε(X, Y )− εMXMY√

mF,ε(X) + εM2
X

√
mF,ε(Y ) + εM2

Y

− ρ,

where ρ = T (F ).

We stress that the denominator in either maximum bias curve in Theorem 1 is strictly
positive; a proof of this claim is provided in a lemma in Appendix B.1.

This result of Theorem 1 is similar to Proposition 2 in Raymaekers & Rousseeuw (2021).
However, our result does not require a symmetric and unimodal density of model distribu-
tion F , which is due to the boundedness of X and Y , nor do we require that X and Y are
zero-mean and have the same variance at F .

We now turn to the breakdown value. Capéraà & Guillem (1997) define the breakdown
value of a correlation estimator as the smallest contamination fraction required to render
two perfectly correlated variables negatively correlated. Specifically,

Definition 2 (Breakdown value). Let F be a bivariate distribution of (X, Y ), where X = Y ,
and T be Pearson’s correlation measure. The breakdown value of T is defined as

ε∗(T ) = inf
{
ε > 0 : inf

G∈Fε

T (G) ≤ 0
}
.

The closer a breakdown value is to zero, the fewer contaminated observations are required
to break Pearson’s correlation. Consequently, a high breakdown value is desirable.

Proposition 2. For a rating-scale variable X with support {−MX , . . . ,MX}, the breakdown
value of Pearson correlation measure T at model distribution F is

ε∗(T ) =


EF [X]2−VarF [X]−M2

X+

√(
VarF [X]−EF [X]2+M2

X

)2
+4EF [X]2VarF [X]

2EF [X]2
if EF [X] ̸= 0,

VarF [X]

VarF [X]+M2
X

if EF [X] = 0.

The breakdown value for the case EF [X] = 0 corresponds to Corollary 1 in Raymaekers
& Rousseeuw (2021).

3.4 Results for Additive Variables

We now consider a case where we are interested in the correlation between additive responses.
This is a common situation in psychology where one constructs trait scores by summing over
an individual’s responses and then computes the correlation between two trait scores. We
formalize this setup in as follows.
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Assumption 1 ((Mean) scores of traits). Let X1, . . . , XJX and Y1, . . . , YJY be two sets of
responses to rating-scale items, where each Xj and Yk have support regions {−MX , . . . ,MX}
and {−MY , . . . ,MY }, respectively, for all items j = 1, . . . , JX and k = 1, . . . , JY . Let Xj ∼
FX and Yk ∼ FY for all items j = 1, . . . , JX ; k = 1, . . . , JY , and put µX = EFX

[Xj] , σ
2
X =

VarFX
[Xj] , µY = EFY

[Yk], and σ2
Y = VarFY

[Yk]. In addition, for any two distinct items
i ̸= j, put ρX = CorFX

[Xi, Xj] and ρY = CorFY
[Yi, Yj]. Denote the trait scores by

X =
1

JX

JX∑
j=1

Xj and Y =
1

JY

JY∑
j=1

Yj,

and denote by FX,Y the joint distribution of (X,Y ) (implied by FX and FY ), and by ρX,Y =

T
(
FX,Y

)
= CorFX,Y

[
X,Y

]
the Pearson correlation between trait scores X and Y at FX,Y .

The setup of trait scores allows us to calculate the population reliability for each con-
struct. In particular, Cronbach’s α reads under the setup of Assumption 1

α =
JX

JX − 1

1−
∑JX

j=1VarFX
[Xj]

VarFX

[∑JX
j=1Xj

]
 =

JX
JX − 1

(
1− 1

1 + (JX − 1)ρX

)
, (4)

which is a function of within-construct correlation, ρX , and construct size JX ≥ 2. A proof
of statement (4) is provided in the appendix.

It is useful to define the following functions, which are equivalent to the functions in (3)
evaluated at the mean scores under the setup of Assumption 1. For a fixed contamination
fraction ε ∈ [0, 0.5], let

nε(X,Y ) = (1− ε)

(
ρX,Y

√
σ2
Xσ

2
Y

JXJY

(
1 + (JX − 1)ρX

)(
1 + (JY − 1)ρY

)
+ µXµY

)
−

(1− ε)2µXµY

nε(X) = (1− ε)

(
σ2
X

JX

(
1 + (JX − 1)ρX

)
+ µ2

X

)
− (1− ε)2µ2

X , and,

nε(Y ) = (1− ε)

(
σ2
Y

JY

(
1 + (JY − 1)ρY

)
+ µ2

Y

)
− (1− ε)2µ2

Y .

(5)

The following corollary refers to Proposition 1 and states the bias of Pearson correlation
at a given contaminated distribution.

Corollary 1. Assume the setup and notation of Assumption 1, where X = J−1
X

∑JX
j=1 Xj

and Y = J−1
Y

∑JY
j=1 Yj have Pearson correlation ρX,Y = T (FX,Y ) under model distribution

FX,Y . Let HX and HY be distributions of the same support as FX and FY , respectively,
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such that the individual variables Xj and Yj are identically distributed under HX and HY ,
respectively. Denote by νZ and τ 2Z the mean and variance, respectively, of a distribution HZ,
for Z ∈ {X, Y }. In addition, for any two distinct items i ̸= j, put ϕX = CorHX

[Xi, Xj]
and ϕY = CorHY

[Yi, Yj]. Let HX,Y be the contaminating joint distribution of scores X and

Y that is implied by HX and HY , and denote by ϕX,Y = T (HX,Y ) = CorHX,Y

[
X,Y

]
the

Pearson correlation measure T at HX,Y . For ε ∈ [0, 0.5], let GX,Y = (1 − ε)FX,Y + εHX,Y

be the contamination distribution implied by FX,Y and HX,Y , whose respective marginals are
denoted by GX and GY . Then the bias at contamination distribution GX,Y is given by

T (GX,Y )− T (FX,Y ) =
CovGX,Y

[
X,Y

]√
VarGX

[
X
]
VarGY

[
Y
] − ρXY ,

where

CovGX,Y

[
X,Y

]
= nε(X,Y ) + ε

(
(1− ε)

(
νXνY − µXνY − µY νX

)
+

ϕX,Y

√
τ 2Xτ

2
Y

JXJY

(
1 + (JX − 1)ϕX

)(
1 + (JY − 1)ϕY

))
,

as well as

VarGX

[
X
]
= nε(X) + ε

(
(1− ε)νX(νX − 2µX) + τ 2X(1 + (JX − 1)ϕX)/JX

)
,

and

VarGY

[
Y
]
= nε(Y ) + ε

(
(1− ε)νY (νY − 2µY ) + τ 2Y (1 + (JY − 1)ϕY )/JY

)
.

Remark 1. It is possible to derive bias curves for contaminating distributions H under
which the individual variables in a given construct are not identically distributed, but for
the sake of simplicity and brevity, we do not consider such cases.

The next corollary refers to Theorem 1 and Proposition 2 and states the maximum bias
curves as well as the breakdown value of Pearson’s correlation measure when the variables
of interest are additive.

Corollary 2. Assume the setup and notation of Assumption 1, where X = J−1
X

∑JX
j=1 Xj

and Y = J−1
Y

∑JY
j=1 Yj. For fixed contamination fraction ε ∈ [0, 0.5], the maximum upward

bias of Pearson correlation measure T between X and Y at model distribution FX,Y is given
by

B+(ε, T, FX,Y ) =
nε(X,Y ) + εMXMY√

nε(X) + εM2
X

√
nε(Y ) + εM2

Y

− ρX,Y ,
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and the maximum downward bias is given by

B−(ε, T, FX,Y ) =
nε(X,Y )− εMXMY√

nε(X) + εM2
X

√
nε(Y ) + εM2

Y

− ρX,Y .

Corollary 3. Assume the setup and notation of Assumption 1, where X = J−1
X

∑JX
j=1 Xj

and Y = J−1
Y

∑JY
j=1 Yj. The breakdown value of Pearson correlation measure T at model

distribution FX,Y is given by

ε∗(T ) =


µ2
X+VρX

−M2
X+

√
(VρX

−µ2
X+M2

X)
2
+4µ2

XVρX

2µ2
X

if µX ̸= 0,
VρX

VρX
+M2

X
if µX = 0,

where VρX = σ2
X

(
1 + (JX − 1)ρX

)
/JX .

4 Evaluation at Various Distributions

In the previous section, we have derived maximum bias curves, breakdown values, and influ-
ence functions for Pearson’s correlation measure between discrete ordinal variables at some
model distribution. In this section, we evaluate these results at various model distributions
that are commonly observed in questionnaire-based research.

An ordinal discrete variable X with K Likert-type answer category has support
{1, . . . , K}, where larger values correspond to stronger degrees of agreement. The prob-
ability mass function associated with X is given by P[X = k] = πk, such that

∑K
k=1 πk = 1

for nonnegative response probabilities πk, k = 1, . . . , K. The response probabilities πk are
governed by the (marginal) response distribution of X, denoted FX .

4 We focus on three
types of response distributions FX , namely centered, agreeing, and polarizing response dis-
tributions. First, centered response distributions emulate items to which respondents tend
to have no strong sentiment and therefore prefer neutral response categories in the center
of the set of Likert-type answer categories. Second, items with an agreeing response distri-
bution are items to which respondents are likely to express agreement by choosing response
categories toward the right end in the set of answer categories. Items to which disagreement
is likely can be obtained by reversing an agreeing response distribution. Third, polarizing
response distributions mimic items to which respondents are likely to have strong divergent
sentiments by choosing response categories on either end of the response category set.

Table 1 lists each of the three types of response distribution FX for three numbers of
Likert-type answer categories, K ∈ {5, 7, 9}. For instance, the distributions for K = 5
answer categories have been used in Alfons & Welz (2022).

In the following, we evaluate our main findings on the Pearson correlation between two
ordinal discrete random variables, X and Y . Each variableX and Y has one of the (marginal)

4That is, FX is a categorical distribution, which is a multinomial distribution for one trial.
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Type π1 π2 π3 π4 π5
Centered 0.15 0.20 0.30 0.20 0.15
Agreeing 0.10 0.15 0.20 0.25 0.30
Polarizing 0.30 0.175 0.05 0.175 0.30

(a) K = 5 Likert-type answer categories

Type π1 π2 π3 π4 π5 π6 π7
Centered 0.05 0.125 0.2 0.25 0.2 0.125 0.05
Agreeing 0.05 0.075 0.1 0.125 0.15 0.225 0.275
Polarized 0.25 0.15 0.075 0.05 0.075 0.15 0.25

(b) K = 7 Likert-type answer categories

Type π1 π2 π3 π4 π5 π6 π7 π8 π9
Centered 0.025 0.05 0.15 0.175 0.2 0.175 0.15 0.05 0.025
Agreeing 0.025 0.05 0.075 0.075 0.1 0.125 0.15 0.175 0.225
Polarized 0.24 0.15 0.05 0.05 0.02 0.05 0.05 0.15 0.24

(c) K = 9 Likert-type answer categories

Table 1: Response distributions FX for given number of answer categories, K, where πk = P[X =
k] for the k-th response category of a discrete ordinal variable X. The set of answer categories is
anchored at “1”, expressing the strongest form of disapproval, and “K”, expressing the strongest
form of approval.

response distributions in Table 1. For simplicity, we restrict our analysis to variables with the
same support regions, that is, both X and Y have Likert-type support {1, . . . , K}. However,
for fixed K, the corresponding individual marginal response distributions FX and FY may
be different. Furthermore, to be able to apply our theoretical results, we silently rescale
the support to be of form {−M, . . . ,M} for some M > 0 by following the steps outlined in
Section 3.2.

4.1 Breakdown Value

Before we evaluate the breakdown value for different scenarios, it is useful to first evaluate
construct reliability for various choices of construct size, J , and within-construct correla-
tion ρX . Figure 1 plots Cronbach’s α, as defined in (4), as a function of these two quan-
tities. Construct reliability increases with construct size and within-construct correlation.
For smaller constructs of size five or smaller, only high correlations of 0.6 or more achieve
acceptable levels of α of at least 0.75 (Robinson, 2018). For larger constructs comprising
more than five items, a weaker within-construct correlation of 0.4 can suffice for α-values
of at least 0.75. Conversely, very weak within-correlations of 0.2 require excessively large
construct sizes to achieve acceptable construct reliability.

Figure 2 evaluates the breakdown values for various choices of construct size J (Propo-
sition 2 for J = 1 and Corollary 2 for J > 1), within-construct correlation ρX , number of
answer categories K, and response distributions from Table 1. Breakdown values tend to
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Figure 1: Cronbach’s α (y-axis; ee Equation 4) for various choices of construct size J ∈ {2, . . . , 50}
(x-axis) and within-construct correlation ρX (colors).

be lower for higher numbers of answer categories and weaker within-construct correlations.
In addition, centered distributions consistently have lower breakdown values than “agree-
ing” distributions, where such distributions in turn consistently have lower breakdown values
than polarized distributions. Furthermore, breakdown values diminish rapidly with growing
construct sizes.

We conclude that constructs with fewer items are preferable from a robustness perspective
for two reasons: First, having shorter constructs (and subsequently shorter questionnaires)
drastically reduces the probability that respondents start responding carelessly Bowling et al.
(2021a). Second, if there is careless responding, then a relatively large prevalence of careless
respondents is required to break down Pearson’s correlation measure (Figure 2). On the other
hand, having smaller constructs may result in diminished construct reliability (Figure 1) and
less accurate measurement.

Hence, we argue that in a discussion on construct size, one should take a more nuanced
stance: While larger construct sizes are beneficial for reliability and accuracy in the absence of
careless responding, such constructs are highly susceptible to the adverse effects of careless
responding, and carelessness is more likely to occur in larger construct sizes (cf. Bowling
et al., 2021a). It follows that larger constructs are only beneficial to measurement quality
in an idealized, potentially overly optimistic setup. In fact, larger constructs may even be
detrimental to measurement quality due to increased susceptibility to careless responding and
overall higher likelihood of carelessness. In addition, questionnaires with lengthy constructs
are expensive to administer due to, for instance, higher lab costs and more participant
compensation.5 Hence, we call for a more nuanced and realistic stance on measurement
quality: Instead of striving for maximizing theoretical construct reliability by enlarging

5The budget saved on compensating participants for long questionnaire experiments could also be spent
on recruiting a larger number of participants for shorter experiments, thereby enhancing statistical power of
the experiment.
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Figure 2: Breakdown values (y-axis; Proposition 2 and Corollary 2) for various choices of construct
size J ∈ {1, . . . , 50} (x-axis), within-construct correlation ρX (colors), number of Likert-type answer
categories K (rows), and response distributions (columns), where the latter ones are defined in
Table 1.
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construct size, one should strive for shorter constructs that still yield acceptable theoretical
reliability. Doing so not only has statistical advantages due to enhanced robustness, but
also practical ones due to lower costs and higher participant convenience. Overall, it might
be preferable for the general scientific method to have instruments that work well in many,
potentially very noisy scenarios, instead of instruments that work exceptionally well in a few,
idealized scenarios, but can fail miserably in even slightly less favorable scenarios.

4.2 Maximum Bias Curves

The breakdown value represents a worst-case scenario in which perfect correlation gets
dragged down to zero correlation due to careless responding. However, carelessness can
already have unacceptably strong adverse effects when the correlation is not reduced to zero.
To obtain a more nuanced picture of the effects of careless responding on correlation, we
plot the maximum bias curves (Theorem 1 and Corollary 2) for various values of “true”
correlation in the absence of carelessness, various model distributions (Table 1), and various
contamination fractions.

Figure 3 contains heatmaps of the absolute value of maximum bias curves of Pearson’s
correlation measure T between ordinal discrete variables X and Y for various model distri-
butions F . In particular, they visualize the absolute value of the maximum upward bias,
B+(ε, T, F ), if the true correlation ρ = T (F ) at model distribution F is negative, and the
absolute value of maximum downward bias, B−(ε, T, F ), if ρ ≥ 0. The left panel (Figure 3a)
shows maximum bias curves for single-item constructs (J = 1) for K = 5 Likert-type answer
categories, while the right panel (Figure 3b) does so for K = 9 answer categories and a large
construct size, J = 10, with strong within-construct correlations of ρX = ρY = 0.8. Hence,
the left panel reflects a situation with relatively low measurement quality under F (small
construct and few answer categories), while the right panel reflects a situation with high
measurement quality (α of > 0.95; Figure 1) under F .
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A Statistical Functionals

In this section, we briefly introduce the concept of (statistical) functionals, and derive the
sample Pearson correlation coefficient expressed as a functional.

Suppose X is a real-valued random variable with distribution F . The population mean
of X is defined by the integral

T (F ) := EF [X] =

∫
x dF (x), (A.1)

which we express as a functional T of distribution F . Recall that for a given N -sized random
sample X1, . . . , XN from F , the empirical distribution function of F at some x ∈ R is given
by

F̂N(x) =
1

N

N∑
i=1

1 {Xi ≤ x} =
1

N

N∑
i=1

∆Xi
(x),

where ∆y(x) = 1 {y ≤ x} is a point mass (Dirac) measure at some point y.
To obtain the empirical counterpart of the population mean T (F ) in (A.1), we simply

evaluate T at the empirical distribution function F̂N :

T (F̂N) = EF̂N
[X] =

∫
x dF̂N(x)

=

∫
x d

(
1

N

n∑
i=1

∆Xi
(x)

)

=
1

N

N∑
i=1

∫
x d∆Xi

(x)

=
1

N

N∑
i=1

Xi

= XN ,

(A.2)

where we have used the property
∫
fd∆x = f(x) for any function f .

In similar fashion, we can show that EF̂N
[X2] = 1

N

∑N
i=1X

2
i . It follows that the empirical

counterpart of population variance VarF [X] = EF [X2]− EF [X]2 can be obtained by

VarF̂N
[X] = EF̂N

[
X2
]
− EF̂N

[X]2 =
N∑
i=1

X2
i −X

2

N , (A.3)

and similarly for VarF̂N
[Y ].

Now, suppose that F is a joint bivariate distribution of random variables (X, Y ). The
empirical distribution function of an N -sized random sample {(Xi, Yi)}Ni=1 from F is given
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by F̂N(x, y) =
1
N

∑N
i=1∆(Xi,Yi)(x, y), for x, y ∈ R. Repeating the steps in (A.2), we obtain

the empirical counterpart of population mean EF [XY ] by

EF̂N
[XY ] =

1

N

N∑
i=1

XiYi. (A.4)

Finally, the population covariance of X and Y is defined as

CovF [X, Y ] = EF [XY ]− EF [X]EF [Y ] ,

and its empirical counterpart is subsequently given by

CovF̂N
[X, Y ] = EF̂N

[XY ]− EF̂N
[X]EF̂N

[Y ]

=
1

N

N∑
i=1

XiYi −XNY N ,
(A.5)

where we have used (A.2) and (A.4).
The population correlation between X and Y is defined as

CorF [X, Y ] =
CovF [X, Y ]√

VarF [X]
√
VarF [Y ]

.

Plugging in F̂N yields its empirical counterpart,

CorF̂N
[X, Y ] =

CovF̂N
[X, Y ]√

VarF̂N
[X]
√
VarF̂N

[Y ]

=
1
N

∑N
i=1XiYi −XNY N√

1
N

∑N
i=1X

2
i −X

2

N

√
1
N

∑N
i=1 Y

2
i − Y

2

N

,

where we have used (A.3) and (A.5). This expression is exactly the definition of Pearson’s
correlation measure. Hence, writing Pearson’s correlation measure as statistical functional
allows us to express both its population and empirical version in one term.

B Proofs

B.1 Useful Lemmata

Lemma B.1. Let X be a discrete ordinal random variable with an arbitrary distribution F
of support {−MX , . . . ,MX}, where MX > 0. Then the term

mF,ε(X) + εM2
X

is strictly positive for all ε ∈ [0, 1).
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Proof. Fix ε ∈ [0, 1). Then

0 ≤ EF

[
X2
]
− EF [X]2

< EF

[
X2
]
− (1− ε)2EF [X]2

= (1− ε)EF

[
X2
]
− (1− ε)2EF [X]2 + εEF

[
X2
]

≤ (1− ε)EF

[
X2
]
− (1− ε)2EF [X]2 + εM2

X

= (1− ε)
(
VarF [X] + EF [X]2

)
− (1− ε)2EF [X]2 + εM2

X

= mF,ε(X) + εM2
X ,

where the first line follows from Jensen’s inequality and the fourth line follows from the
assumption that |X| is bounded from above by MX .

This lemma demonstrates that the denominators in either maximum bias curve in The-
orem 1 are strictly positive and real-valued.

The next lemma provides quantities that will be useful in proofs of the corollaries of
Proposition 1, 2, and Theorem 1 in the setup of Assumption 1.

Lemma B.2. Assume the setup and notation of Assumption 1, where X = J−1
X

∑JX
j=1Xj.

Denote by FX the (marginal) distribution of mean score X. It holds true that

EFX

[
X
]
= µX , (B.6a)

VarFX

[
X
]
=

σ2
X

JX

(
1 + (JX − 1)ρX

)
, (B.6b)

and, for distinct items i, j ∈ {1, . . . , JX}, i ̸= j,

EFX
[XiXj] = ρXσ

2
X + µ2

X , (B.6c)

CovFX
[Xi, Xj] = ρXσ

2
X . (B.6d)

Proof. For (B.6a), we have by the assumption that the Xj are identically distributed with
distribution FX that

EFX

[
X
]
=

1

JX

JX∑
j=1

EFX
[Xj] = µX .

For (B.6c) and distinct items i ̸= j, we have by the assumption of identical distribution that

EFX
[XiXj] = CovFX

[Xi, Xj] + EFX
[Xi]EFX

[Xj]

= ρX

√
VarFX

[Xi] VarFX
[Xj] + µ2

X

= ρXσ
2
X + µ2

X .
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Statement (B.6d) trivially follows from the definition of correlation and identical distribution
of the individual item responses. For (B.6b), we again have by identical distribution that

VarFX

[
X
]
=

1

J2
X

(
JX∑
j=1

VarFX
[Xj] + 2

JX(JX−1)/2 terms︷ ︸︸ ︷∑∑
i<j

CovFX
[Xi, Xj]

)

=
1

JX

(
σ2
X + 2(JX − 1)/2ρXσ

2
X

)
=

σ2
X

JX

(
1 + (JX − 1)ρX

)
,

where we have used (B.6d) in the second line.

The next lemma establishes Equation (4).

Lemma B.3. Assume the setup and notation of Assumption 1, where X = J−1
X

∑JX
j=1Xj.

Denote by FX the (marginal) distribution of mean score X. Cronbach’s α (Cronbach, 1951),
defined by,

α =
JX

JX − 1

1−
∑JX

j=1 VarFX
[Xj]

VarFX

[∑JX
j=1Xj

]
 , (B.7)

is then equal to

α =
JX

JX − 1

(
1− 1

1 + (JX − 1)ρX

)
.

Proof. This statement follows immediately from Equation (B.6b) in Lemma B.2 and the
assumption that the individual item responses Xj are identically distributed with distribu-
tion FX .

B.2 Proof of Proposition 1

Let G = (1− ε)F + εH ∈ Fε for a fixed ε ∈ [0, 0.5].
We first derive the variance expressions under G. We have for the first two moments

of X under G that

EG [X] = (1− ε)EF [X] + εEH [X]

EG

[
X2
]
= (1− ε)EF

[
X2
]
+ εEH

[
X2
]
,

where we have used the definition of mε(X) in (3). It follows from squaring the first moment
that

EG [X]2 = (1− ε)2EF [X]2 + 2(1− ε)εEF [X]EH [X] + ε2EH [X]2 ,
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and therefore

VarG [X] = EG

[
X2
]
− EG [X]2

= mε(X) + ε
(
− 2(1− ε)EF [X]EH [X] + EH

[
X2
]
− εEH [X]2

)
.

Repeating these steps for Y proves the variance expressions under G.
We now turn to deriving the expression for CovG [X, Y ]. We have that

EG [XY ] = (1− ε)EF [XY ] + εEH [XY ]

and that

EG [X]EG [Y ] =

(1− ε)2EF [X]EF [Y ] + (1− ε)εEF [X]EH [Y ] + (1− ε)εEF [Y ]EH [X] + ε2EH [X]EH [Y ] .

The desired expression follows from substituting into the identity

CovG [X, Y ] = EG [XY ]− EG [X]EG [Y ] ,

and the definition of mε(X, Y ) in (3). Substituting these (co)variance expressions into the
definition of the bias curve at G for Pearson correlation (2) completes the proof.

B.3 Proof of Theorem 1

We prove the expression for the maximum upward bias curve B+(ε, T, F ). The proof for
the maximum downward bias curve B+(ε, T, F ) follows by replacing Y by −Y in the steps
below.

The Pearson correlation measure T evaluated at any contaminating distribution G =
(1− ε)F + εH ∈ Fε is by definition given by

T (G) =
CovG [X, Y ]√

VarG [X]
√
VarG [Y ]

. (B.8)

We aim at deriving an upper bound for this expression that holds uniformly over all con-
taminated distributions G ∈ Fε for fixed ε ∈ [0, 0.5].

We derive an upper bound for T (G) in (B.8) by deriving lower bounds for its denominator
and upper bounds for its numerator. By Proposition 1, the denominator is identified by the
square root of variance expressions

VarG [X] = mε(X) + ε
(
− 2(1− ε)EF [X]EH [X] + VH,ε(X)

)
, (B.9)

where
VH,ε(X) = EH

[
X2
]
− εEH [X]2 .
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By Proposition 1, the numerator in (B.8) equals

CovG [X, Y ] = mε(X, Y )+

ε
(
− (1− ε)EF [X]EH [Y ]− (1− ε)EF [Y ]EH [X] + EH [XY ]− εEH [X]EH [Y ]

)
.

(B.10)

We distinguish between two cases for the cross term EH [X]EH [Y ].

Case 1: EH [X]EH [Y ] ≤ 0. Because εEH [X]2 ≤ EH [X]2, it follows that (B.9) can be
upper bounded as

√
VarG [X] ≥

√
mε(X) + ε

(
− 2(1− ε)EF [X]EH [X] + EH [X2]− EH [X]2

)
=

√
mε(X) + ε

(
− 2(1− ε)EF [X]EH [X] + VarH [X]

)
.

An analogous bound can be obtained for
√
VarG [Y ].

Following the same steps as in the proof of Proposition 2 in Raymaekers & Rousseeuw
(2021), the numerator (B.10) is bounded from above by

mε(X, Y ) + ε
(
− (1− ε)EF [X]EH [Y ]− (1− ε)EF [Y ]EH [X] +

√
VarH [X]

√
VarH [Y ]

)
.

Combining the previous two displays, Pearson correlation T (G) is bounded from above by

mε(X,Y ) + ε
(
− (1− ε)EF [X]EH [Y ]− (1− ε)EF [Y ]EH [X] +

√
VarH [X]

√
VarH [Y ]

)
√

mε(X) + ε
(
− 2(1− ε)EF [X]EH [X] + VarH [X]

)√
mε(Y ) + ε

(
− 2(1− ε)EF [Y ]EH [Y ] + VarH [Y ]

) .
(B.11)

This bound increases with VarH [X] = EH [X2]−EH [X]2 and VarH [Y ] = EH [Y 2]−EH [Y ]2,
so we wish to make these two terms as large as possible. These terms are maximized when
EH [X2] = supH′ EH′ [X2] = M2

X and EH [X] = 0, as well as EH [Y 2] = M2
Y and EH [Y ] = 0.

Combining this with the intermediate bound (B.11), it follows that Pearson correlation T (G)
is bounded from above by

T (G) ≤ mε(X, Y ) + εMXMY√
mε(X) + εM2

X

√
mε(Y ) + εM2

Y

.

We now turn to the complementary case.
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Case 2: EH [X]EH [Y ] > 0. In the proof of Proposition 2 of Raymaekers & Rousseeuw
(2021) it is shown that for any distribution H,

EH [XY ]− εEH [X]EH [Y ] ≤
√
VH,ε(X)

√
VH,ε(Y ).

Applying this to the numerator in (B.8), it follows that T (G) is bounded from above by

mε(X, Y ) + ε
(
− (1− ε)EF [X]EH [Y ]− (1− ε)EF [Y ]EH [X] +

√
VH,ε(X)

√
VH,ε(Y )

)√
mε(X) + ε

(
− 2(1− ε)EF [X]EH [X] + VH,ε(X)

)√
mε(Y ) + ε

(
− 2(1− ε)EF [Y ]EH [Y ] + VH,ε(Y )

) .
Juts like in the previous case, this bound increases with VH,ε(X) = EH [X2]− εEH [X]2 and
VH,ε(Y ) = EH [Y 2] − εEH [Y ]2. Likewise, these terms are maximized when EH [X2] = M2

X

and EH [X] = 0, as well as EH [Y 2] = M2
Y and EH [Y ] = 0. Combining this with the previous

display, it follows that Pearson correlation T (G) can be bounded from above by

T (G) ≤ mε(X, Y ) + εMXMY√
mε(X) + εM2

X

√
mε(Y ) + εM2

Y

=: C(ε).

We conclude that in either case, T (G) is upper bounded by C(ε).
It remains to be shown that the bound C(ε) is sharp. For the maximum upward bias, the

two worst-placed contamination points in the (X, Y ) space are (−MX ,−MY ) and (MX ,MY )
because the upward bias is maximal when Pearson correlation ρ = T (F ) under model dis-
tribution F is negative. The distribution corresponding to the worst placed contamination
points is therefore

H ′ :=
1

2
∆(−MX ,−MY ) +

1

2
∆(MX ,MY ), (B.12)

where (s, t) 7→ ∆(x,y)(s, t) = 1 {x ≤ s, y ≤ t} is a bivariate distribution function that puts
all its mass at a point (x, y). For the relevant moments of X and Y under contaminating
distribution H ′ it holds that

EH′ [XY ] = MXMY , EH′ [X] = EH′ [Y ] = 0, EH′
[
X2
]
= M2

X , and EH′
[
Y 2
]
= M2

Y .

Therefore, for G′ := (1−ε)F+εH ′, it follows from (B.8) that Pearson correlation T evaluated
at contaminated distribution G′ is given by

T (G′) =
mε(X, Y ) + εMXMY√

mε(X) + εM2
X

√
mε(Y ) + εM2

Y

,

which is equal to the previously derived upper bound C(ε), thereby proving that this bound
is indeed sharp. This concludes the proof for the maximum upward bias. The proof for the
maximum downward bias follows by repeating the above steps with Y replaced by −Y , and
with contaminating distributionH ′ in (B.12) replaced byH ′ := 1

2
∆(−MX ,MY )+

1
2
∆(MX ,−MY ).
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B.4 Proof of Proposition 2

The case EF [X] = 0 corresponds to Corollary 1 in Raymaekers & Rousseeuw (2021), so it
suffices to prove the statement for the complementary case EF [X] ̸= 0.

Let X = Y so that ρ = T (F ) = 1. From the maximum downward bias (Theorem 1) we
know that T (G) is bounded from below by

mε(X,X)− εM2
X

mε(X) + εM2
X

,

for any G ∈ Fε and fixed ε ∈ [0, 0.5]. Lemma B.1 implies that this bound is nonpositive if

(1− ε)
(
VarF [X] + EF [X]2

)
− (1− ε)2EF [X]2 − εM2

X ≤ 0,

which is equivalent to

ε2EF [X]2 + ε
(
VarF [X]− EF [X]2 +M2

X

)
− VarF [X] ≥ 0.

This quadratic expression is satisfied with equality by

ε =
EF [X]2 − VarF [X]−M2

X +
√(

VarF [X]− EF [X]2 +M2
X

)2
+ 4EF [X]2VarF [X]

2EF [X]2
,

which completes the proof.

B.5 Proof of Corollary 1

To simplify notation, put F = FX,Y , H = HX,Y , ρ = ρX,Y , and G = (1− ε)F + εH. In addi-
tion, suppose that contaminating distribution H or model distribution F used as a subscript
of an operator such as EH is to be understood as either joint or marginal distribution; the
type of which will be clear from the context.

Applying Lemma B.2 to distribution H yields

EH

[
X
]
= νX , VarH

[
X
]
= τ 2X

(
1 + (JX − 1)ϕX

)
/JX ,

and, for distinct items i ̸= j,

EH [XiXj] = ϕXτ
2
X + ν2

X , CovH [Xi, Xj] = ϕXτ
2
X .

Therefore,

EH

[
X

2
]
= VarH

[
X
]
+ EH

[
X
]2

= τ 2X
(
1 + (JX − 1)ϕX

)
/JX + τ 2X ,
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and analogously for Y under H. Thus,

EH

[
XY

]
= CovH

[
X,Y

]
+ EH

[
X
]
EH

[
Y
]

= ϕX,Y

√
VarH

[
X
]
VarH

[
Y
]
+ νXνY

= ϕX,Y

√
τ 2Xτ

2
Y

JXJY

(
1 + (JX − 1)ϕX

)(
1 + (JY − 1)ϕY

)
+ νXνY .

Applying Proposition 1 now yields, using the quantities just derived,

CovG
[
X,Y

]
= mε(X,Y ) + ε

(
− (1− ε)EF

[
X
]
EH

[
Y
]
− (1− ε)EF

[
Y
]
EH

[
X
]
+

EH

[
XY

]
− εEH

[
X
]
EH

[
Y
])

= nε(X,Y ) + ε

(
(1− ε)

(
νXνY − µXνY − µY νX

)
+

ϕX,Y

√
τ 2Xτ

2
Y

JXJY

(
1 + (JX − 1)ϕX

)(
1 + (JY − 1)ϕY

))
,

and

VarG
[
X
]
= mε(X) + ε

(
− 2(1− ε)EF

[
X
]
HX + EH

[
X

2
]
− εEH

[
X
]2)

= nε(X) + ε

(
(1− ε)νX(νX − 2µX) + τ 2X(1 + (JX − 1)ϕX)/JX

)
,

and analogously for VarG
[
Y
]
. The result now follows from Proposition 1.

B.6 Proof of Corollary 2

Evaluating the function mε(X, Y ) in (3) at scores (X,Y ) yields

mε(X,Y ) = (1− ε)
(
ρX,Y

√
VarFX

[
X
]
VarFY

[
Y
]
+ EFX

[
X
]
EFY

[
X
] )

− EFX

[
X
]
EFY

[
X
]
,

= (1− ε)

(
ρX,Y

√
σ2
Xσ

2
Y

JXJY

(
1 + (JX − 1)ρX

)(
1 + (JY − 1)ρY

)
+ µXµY

)
−

(1− ε)2µXµY ,

and, evaluating mε(X) at X,

mε(X) = (1− ε)
(
VarFX

[
X
]
+ EFX

[
X
]2 )− (1− ε)2EFX

[
X
]2

= (1− ε)

(
σ2
X

JX

(
1 + (JX − 1)ρX

)
+ µ2

X

)
− (1− ε)2µ2

X ,
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where we have used Equations (B.6a) and (B.6b) in Lemma B.2. To simplify notation,
we denote the previous displays by nε(X,Y ) and nε(X), respectively, which motivates the
definitions in Equation (5). Expression nε(Y ) is derived in analogue to nε(X).

The result for the maxbias curves of Pearson correlation T evaluated at FX,Y now fol-

lows from a direct application of Theorem 1, upon realizing that X and Y have support
regions {−MX ,−(MX − 1/JX), . . . ,MX − 1/JX ,MX} and {−MY ,−(MY − 1/JY ), . . . ,MY −
1/JY ,MY }, respectively.

B.7 Proof of Corollary 3

The result follows directly from Proposition 2 from the fact that the support region of X is
given by {−MX , . . . ,MX}, that µX = 0 implies that EFX

[
X
]
= 0 and that µX ̸= 0 implies

that EFX

[
X
]
̸= 0 in the assumed setup.

C Rescaling Support Regions

TODO

D Results for Mean and Variance

In this section, we derive (maximum) bias curves for the population mean and population
variance of a rating scale variable X with finite support region of the form {−MX , . . . ,MX}.
Like before, the possible realizations in the support region may be non-integer valued. Also
like before, we denote by F the uncontaminated model distribution of X and by Fε =

{
G :

G = (1−ε)F+εH for any distribtion H with same support as F
}
the class of contaminated

distributions associated with model distribution F .
Notably, we do not derive breakdown values for mean or variance in our setup with

rating-scale variables. The reason is that breakdown values are traditionally defined as
the smallest contamination fraction required for an arbitrarily large bias, that is, infinite
maximum bias (e.g., Huber & Ronchetti, 2009; Maronna et al., 2018). While this definition
is natural in continuous random variables (which are typically unbounded), it does not apply
to rating-scale variables. Due to rating-scale variables being bounded by construction, the
maximum bias of any statistic will be bounded as well. In the special case of Pearson
correlation where the statistic is bounded by construction (namely by ±1), the maximum
bias will be bounded as well, which necessitates a refined definition of the breakdown value.
Such a refined definition—originally proposed by Capéraà & Guillem (1997)—is given in
Definition 1. Proposing similar refined definitions of breakdown values for population mean
and population variance when they are known to be bounded by construction (like when
variables are bounded) is beyond the scope of this paper and we therefore cannot derive
breakdown values for means and variances in our setting with rating-scale variables.
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For (maximum) bias curves of mean and variance in our setting, we first establish general
propositions, and thereupon derive useful corollaries for additive rating-scale variables, like
a (mean) score of a personality trait.

We start with bias curves at a specific contaminated distribution.

Proposition D.1 (Bias curves at specific contaminated distribution). Let X be a discrete
ordinal variable with support region {−MX , . . . ,MX}. For fixed contamination fraction ε ∈
[0, 0.5] and contaminated distribution G = (1 − ε)F + εH ∈ Fε, the bias of the population
mean “E” of X at model distribution F is given by

EG [X]− EF [X] = ε
(
EH [X]− EF [X]

)
,

and the bias of population variance “Var” at F is given by

VarG [X]− VarF [X] = mε(X)+

ε

(
(1− ε)EH [X]

(
EH [X]− 2EF [X]

)
+VarH [X]

)
− VarF [X] ,

where the function mε(X) is defined in (3).

Proof. For the mean, the result follows immediately from EF [G] = (1− ε)EF [X] + εEH [X].
For the variance, simple algebra shows that

EG

[
X2
]
= (1− ε)EF

[
X2
]
+ εEH

[
X2
]
,

EG [X]2 = (1− ε)2EF [X]2 + ε2EH [X]2 + 2(1− ε)εEF [X]EH [X] .
(D.13)

Then

VarG [X] = EG

[
X2
]
− EG [X]2

= mε(X) + ε
(
− 2(1− ε)εEF [X]EH [X] + EH

[
X2
]
− εEH [X]2

)
= mε(X) + ε

(
(1− ε)EH [X]

(
EH [X]− 2EF [X]

)
+VarH [X]

)
,

thereby concluding the proof.

Next, we derive maximum bias curves in the following proposition.

Proposition D.2 (Maximum bias curves). Let X be a discrete ordinal variable with support
region {−MX , . . . ,MX}. For fixed contamination fraction ε ∈ [0, 0.5], the maximum bias
upward of the mean at model distribution F is given by

B+(ε,E, F ) = ε
(
MX − EF [X]

)
,
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and the maximum downward bias is

B−(ε,E, F ) = −ε
(
MX + EF [X]

)
.

The maximum bias of the variance at model distribution F is given by

B(ε,Var, F ) = mε(X) + εM2
X − VarF [X] .

Proof. Let G = (1− ε)F + εH ∈ Fε be arbitrary.

Maximum bias for expectation. Denote by T (F ) = EF [X] the functional form of the
mean at distribution F . We prove the result for maximum upward bias in the following. The
result for maximum downward bias follows by replacing X in by −X in the steps below. We
have that

EG [X] = (1− ε)EF [X] + εEH [X]

≤ (1− ε)EF [X] + εEH [|X|]
≤ (1− ε)EF [X] + εMX .

We now verify that this bound is sharp. The contamination distribution corresponding to the
worst-placed contamination point is given by H ′ := ∆

X
, at which the expectation takes value

EH′ [X] = MX and. For G′ := (1− ε)F + εH ′, we have that EG′ [X] = (1− ε)EF [X] + εMX ,
which verifies sharpness of the bound derived in the preceding display and thereby the proof
for the maximum upward bias. The proof for the maximum downward bias follows by
repeating these steps for X replaced by −X and H ′ replaced by H ′ = ∆(−MX).

We proceed by proving the claimed maximum bias curve for variances.

Maximum bias for variance. We have that

VarG [X] = EG

[
X2
]
− EG [X]2

= mε(X) + ε
(
− 2(1− ε)εEF [X]EH [X] + EH

[
X2
]
− εEH [X]2

)
,

where we have used (D.13). This term increases with EH [X2]−εEH [X]2, which is maximized
when EH [X2] = M2

X and EH [X] = 0. It follows that VarG [X] is bounded from above by

mε(X) + εM2
X .

To verify sharpness of this bound, consider the contaminating distribution at the worst-
placed point, being

H ′ :=
1

2
∆MX

+
1

2
∆(−MX).

Note that EH′ [X] = 0 and EH′ [X2] = M2
X . Then, evaluating the variance at contaminated

distribution G′ := (1 − ε)F + εH ′ yields VarG′ [X] = mε(X) + εM2
X , thereby verifying

sharpness of the derived bound. This completes the proof.
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We now derive corollaries for the additive scores. Specifically, Corollary D.1 provides bias
curves at a specific contaminated distribution and Corollary D.2 the maximum bias curves.

Corollary D.1. Assume the setup and notation of Assumption 1, where X = J−1
X

∑JX
j=1 Xj

obeys model distribution FX and the individual variables Xj are identically distributed accord-
ing to model distribution FX . Let HX be a distribution of the same support as FX such that
the individual variables Xj are identically distributed under HX . Denote by νX and τ 2X the
mean and variance, respectively, of distribution HX . In addition, for any two distinct items
i ̸= j, put ϕX = CorHX

[Xi, Xj]. Let HX be the contaminating joint distribution of scores X
that is implied by HX . For contamination fraction ε ∈ [0, 0.5], let GX = (1− ε)FX + εHX be
the contamination distribution implied by FX and HX . Then at contamination distribution
GX , the bias of the population mean is given by

EGX

[
X
]
− EFX

[
X
]
= ε(νX − µX),

and the bias of the population variance is given by

VarGX

[
X
]
− VarFX

[
X
]
= nε(X)+

ε

(
(1− ε)νX(nuX − 2µX) +

τ 2X
JX

(
1 + (JX − 1)ϕX

))
− σ2

X

JX

(
1 + (JX − 1)ρX

)
.

Proof. To simplify notation, put F = FX , H = HX , and G = GX . Applying Lemma B.2 to
distributions F and H yields

EF

[
X
]
= µX ,

EH

[
X
]
= νX ,

VarF
[
X
]
= σ2

X

(
1 + (JX − 1)ρX

)
/JX , and

VarH
[
X
]
= τ 2X

(
1 + (JX − 1)ϕX

)
/JX .

(D.14)

Then, applying Proposition D.1,

EG

[
X
]
− EF

[
X
]
= ε
(
EH

[
X
]
− EF

[
X
] )

= ε
(
νX − µX

)
,

and

VarG
[
X
]
− VarF

[
X
]

= mε(X) + ε
(
(1− ε)EH

[
X
] (

EH

[
X
]
− 2EF

[
X
] )

+VarH
[
X
] )

− VarF
[
X
]

= nε(X) + ε

(
(1− ε)νX(νX − 2µX) +

τ 2X
JX

(
1 + (JX − 1)ϕX

))
− σ2

X

JX

(
1 + (JX − 1)ρX

)
.

This concludes the proof.
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Corollary D.2. Assume the setup and notation of Assumption 1, where X = J−1
X

∑JX
j=1 Xj

obeys model distribution FX and the individual variables Xj are identically distributed ac-
cording to model distribution FX . For fixed contamination fraction ε ∈ [0, 0.5], the maximum
upward bias and maximum downward bias of the population mean of X at model distribu-
tion FX are respectively given by

B+(ε,E, FX) = ε
(
MX − µX

)
and

B−(ε,E, FX) = −ε
(
MX + µX

)
,

and the maximum bias of the population variance is given by

B(ε,Var, FX) = nε(X) + εM2
X − σ2

(
1 + (JX − 1)ρX

)
/JX .

Proof. The result follows from a direct application of Proposition D.2 on X (which has
support region {−MX , . . . ,MX}) and (D.14).

E Influence Functions

Definition 3 (Influence Function (Hampel, 1974)). The influence function of Pearson cor-
relation measure T at model distribution F is defined as

IF
(
(x, y), T, F ) = lim

ε↓0

T
(
(1− ε)F + ε∆x

)
− T (F )

ε
=

∂

∂ε
T
(
(1− ε)F + ε∆(x,y)

)∣∣∣
ε=0

,

where (x, y) are points in the support of F , and (s, t) 7→ ∆(x,y)(s, t) = 1 {x ≤ s, y ≤ t} is a
bivariate distribution function that puts all its mass at point (x, y).

The influence function is a Gâteaux derivative (which in turn is a generalization of di-
rectional derivatives) and measures how T (F ) reacts when an infinitesimally small amount
of contamination is added in point (x, y). A textbook treatment on influence functions is
given by Hampel et al. (1986).

A concept closely related to the influence function is the gross-error sensitivity, which is
defined as the maximum value of the influence function for a given estimator and distribution.

Definition 4 (Gross-error sensitivity). The gross-error sensitivity of Pearson correlation
measure T at model distribution F is defined as

γ∗(T, F ) = sup
(x,y)

∣∣∣IF((x, y), T, F)∣∣∣,
where the supremum is taken over the support of F .

We now state the influence function and gross-error sensitivity of Pearson correlation for
discrete ordinal variables.
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Theorem 2. Let X and Y be discrete ordinal random variables with support regions SX =
{−MX , . . . ,MX} and SY = {−MY , . . . ,MY }, respectively. The influence function of Pearson
correlation measure T at model distribution F is given by

IF
(
(x, y), T, F ) =

(
x− EF [X]

)(
y − EF [Y ]

)√
VarF [X]

√
VarF [Y ]

− ρ

(
1 +

1

2

(
x− EF [X]

)2
VarF [Y ] +

1

2

(
y − EF [Y ]

)2
VarF [X]− VarF [X] VarF [Y ]

)
,

where ρ = T (F ) and x ∈ SX as well as y ∈ SY .

Remark 2. If EF [X] = EF [Y ] = 0 and VarF [X] = VarF [Y ] = 1, then IF
(
(x, y), T, F ) =

xy − (x2 + y2)ρ/2, which is a classic result derived in Devlin et al. (1975) for the influence
function of Pearson’s correlation measure for standardized random variables.

Proof. For arbitrary ε ∈ [0, 0.5], let Fε = (1 − ε)F + ε∆(x,y) ∈ Fε be the contaminated
distribution of F associated with point mass contamination distribution ∆(x,y) at x ∈ SX , y ∈
SY .

Proposition E.1 (Influence functions of covariance). Let X and Y be arbitrary random
variables with support regions SX and SY , respectively, and let C(F ) = CovF [X, Y ] be
a population covariance between X and Y at joint model distribution F , expressed as a
statistical functional. The influence function of covariance C at F is given by

IF
(
(x, y), C, F

)
= −C(F ) + (x− EF [X])(y − EF [Y ]).

Proof. For arbitrary ε ∈ [0, 0.5], let Fε = (1 − ε)F + ε∆(x,y) ∈ Fε be the contaminated
distribution of F associated with point mass contamination distribution ∆(x,y) at x ∈ SX , y ∈
SY . Let

C(F ) := CovF [X, Y ] = EF [XY ]− EF [X]EF [Y ]

denote a functional version of the population covariance at F . Then, evaluating covariance
at contaminated distribution Fε yields

C(Fε) =

∫
st dFε(s, t)−

(∫
s dFε(s, t)

)(∫
t dFε(s, t)

)
= (1− ε)EF [XY ] + εxy −

(
(1− ε)EF [X] + εx

)(
(1− ε)EF [Y ] + εy

)
= (1− ε)EF [XY ] + εxy −

(
(1− ε)2EF [X]EF [Y ] + (1− ε)εyEF [X] + (1− ε)εxEF [Y ] + ε2xy

)
,
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where we have used that
∫

d∆(x,y)(s, t) =
∫

d∆(x)(s) = x when t is fixed. Differentiating
with with respect to ε and evaluating at ε = 0,

∂

∂ε
C(Fε)

∣∣∣
ε=0

= −EF [XY ] + xy −
(
− 2(1− ε)EF [X]EF [Y ] + (1− 2ε)yEF [X] + (1− 2ε)xEF [Y ] + 2εxy

)∣∣∣∣
ε=0

= −EF [XY ] + xy + EF [X]EF [Y ] + EF [X]EF [Y ]− yEF [X]− xEF [Y ]

= −C(F ) + (x− EF [X])(y − EF [Y ]),

which concludes the proof because the left-hand side corresponds to the definition of the
influence function of the population covariance.

Corollary E.1. Let X be an arbitrary random variable with support region SX . At some
model distribution F , the influence function of variance V (F ) = VarF [X] is given by

IF(x, V, F ) = −V (F ) + (x− EF [X])2,

and the influence function of the corresponding standard deviation S(F ) =
√

V (F ) is given
by

IF(x, S, F ) =
1√
V (F )

((
x− EF [X]

)2 − V (F )
)
.

Proof. The result for the influence function of the variance follows immediately from evalu-
ating Proposition E.1 at Y = X because the covariance of two identical variables X and X
equals the variance of X.
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