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Abstract

Structural equation models are typically fitted to a correlation matrix. When the vari-
ables are rating items, it is often recommended to use polychoric correlation coefficients
estimated via maximum likelihood to calculate the correlation matrix. However, just
like sample correlation, maximum likelihood (ML) is highly susceptible to model mis-
specification due to, for instance, inattentive/careless responding or other violations of
the latent normality assumed by the polychoric model. We propose a novel estimator
that is substantially more robust to model misspecification than ML. Crucially, and in
contrast to previous literature, our estimator makes no assumption whatsoever on the
type, magnitude, or location of potential misspecification, rendering it robust to an
unlimited variety of possible variations of misspecification. It furthermore generalizes
ML and is strongly consistent as well as asymptotically normally distributed, while
being of the same time complexity as ML, meaning that it comes at no additional
computational cost. In addition, we develop a novel diagnostic test that tests whether
each individual cell in a contingency table can be fitted well by the polychoric model,
thereby allowing to trace back potential sources of misspecification. We demonstrate
the robustness and practical usefulness of our estimator in simulation studies and an
empirical application on a Big-5 administration, where we find compelling evidence for
the presence of inattentive respondents whose adverse influence our estimator with-
stands, unlike ML.

Keywords: Robust statistics, polychoric correlation, model misspecification, discrete
data, asymptotic normality
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1 Introduction

Structural equation models, particularly factor models, are typically fitted to a correlation
matrix that has been estimated a priori. When the modeled variables are discrete rating
variables, it is often recommended to estimate the correlation matrix with polychoric cor-
relation coefficients (e.g. Foldnes & Grønneberg, 2022; Garrido et al., 2013; Holgado-Tello
et al., 2010). However, recent work has demonstrated that polychoric correlation is highly
sensitive to violations of an assumption on underlying normality and therefore “cannot be
considered a robust methodology” (Foldnes & Grønneberg, 2022, p. 566). Violations of a
latent normal distribution can be caused by, for example but not limited to, careless or inat-
tentive responding, misresponses, item misunderstanding, or heterogeneous subpopulations,
resulting in possibly large biases in correlational estimates that in turn lead to biases in
estimates of structural equation models.

We propose a novel way to estimate polychoric correlation coefficients that is robust to
non-normality or, more generally, model misspecification. Crucially, we make no assumption
whatsoever on the type, magnitude, or location of potential misspecification, a departure
from existing literature where misspecification is often modeled explicitly. Hence, our esti-
mator is robust to an unlimited and unspecified variety of possible variations of misspeci-
fication. Our estimator generalizes maximum likelihood estimation, is strongly consistent,
asymptotically Gaussian, and comes at no additional computational cost compared to max-
imum likelihood. In addition, we develop a novel test that tests, for each individual cell in a
contingency table, if the polychoric model provides an appropriate fit to that cell. The test
rejects this null hypothesis when the cell in question cannot be fitted sufficiently well, that
is, latent normality cannot be sustained for that cell, and thereby helps pinpoint potential
sources of model misspecification.

We verify the attractive statistical and robustness properties of our estimator by means
of extensive simulation studies and demonstrate its practical usefulness in an empirical ap-
plication on a Big-5 administration (Goldberg, 1992), where we find strong evidence for
the presence of inattentive responding. For instance, the polychoric correlation coefficient
between two mutually contradictory unipolar markers in a neuroticism scale is estimated
as −0.62 by maximum likelihood, whereas our estimator yields a substantially stronger cor-
relation estimate of −0.93, which is, unlike the maximum likelihood result, in line with
literature on this scale.

In the spirit of open and reproducible science and to enhance accessibility and adoption by
empirical researchers, an R implementation of our proposed methodology is freely available
in the package robord (Welz, 2024a, for “ROBust ORDinal data analysis”), and replication
files are publicly available at [add URL when posting to arXiv]. To maximize speed and
performance, the package is predominantly developed in C++ and integrated to R via Rcpp

(Eddelbuettel, 2013).
This paper ties into a growing literature concerned with the validity of research findings

when employed psychological models are misspecified due to responses that do not follow
the assumed model and subsequently cannot be fitted well by that model. An ensuing
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poor model fit may lead a researcher to doubt or even reject the theoretical model (Lai &
Green, 2016). Poor model fit can occur for two reasons. First, the theory behind the model
may simply be wrong, in case of which the model is also wrong and the theory is correctly
rejected by the data. Second, which is the focus of this paper, theory and model may in fact
be correct, yet a misfit occurs due to the presence of a limited number of observations from
a different population, such as careless/inattentive responses or heterogeneous subgroups,
which may lead one to incorrectly reject a theory (Arias et al., 2020). Indeed, already a
small proportion of careless/inattentive responses can substantially deteriorate model fit
(Arias et al., 2020; Huang et al., 2015a; Woods, 2006), and ultimately lead a researcher
to reject a correct hypothesis or sustain an incorrect hypothesis (Arias et al., 2020; Huang
et al., 2015b; Maniaci & Rogge, 2014; McGrath et al., 2010; Woods, 2006; Schmitt & Stults,
1985). Careless responding itself is widely prevalent (Ward & Meade, 2023; Bowling et al.,
2016; Meade & Craig, 2012) with most estimates on its prevalence ranging from 10–15% of
study participants (Curran, 2016; Huang et al., 2015b, 2012; Meade & Craig, 2012), while
already a prevalence 5–10% can jeopardize the validity of research findings (Arias et al.,
2020; Credé, 2010; Woods, 2006). In fact, Ward & Meade (2023) conjecture that careless
responding is likely present in all survey data. In addition to poor model fit, we stress that
careless responses also pose an issue for replication studies because different studies may
yield different results solely due to different proportions of carelessness and not differences in
actual effect sizes (Curran, 2016). Due to the damaging effects of careless responses, a large
number of methods for their detection has emerged, ranging from consistency indicators
such as psychometric antonyms/synonyms (Meade & Craig, 2012) over response times (e.g.
Bowling et al., 2023) to model-based techniques, such as person-fit statistics (e.g. Drasgow
et al., 1985), structural equation models (e.g. Kim et al., 2018), or mixture models (e.g.
Arias et al., 2020). More recently, machine learning techniques have been proposed (Welz &
Alfons, 2023; Schroeders et al., 2022). We refer to Alfons & Welz (2024) for a recent review
of carelessness in survey data.

This paper is structured as follows. Section 2 reviews the polychoric model and maximum
likelihood estimation thereof, Section 3 introduces the proposed methodology, Sections 4
and 5 respectively contain a simulation study and an empirical application on Big-5 data,
and Section 6 concludes.

2 Polychoric correlation

The polychoric correlation model (Pearson & Pearson, 1922) models the association between
two discrete ordinal variables by assuming that an observed pair of responses to two polyto-
mous items is governed by an unobserved discretization process of latent variables that jointly
follow a bivariate standard normal distribution.1 It is an alternative to classic sample corre-

1The polychoric correlation model of Pearson & Pearson (1922) generalizes a previous model for dichoto-
mous responses called tetrachoric correlation model (Pearson, 1901). Correspondingly, when both items are
dichotomous, one may alternatively speak of tetrachoric correlation instead of polychoric correlation.
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lation (also known as Pearson’s correlation coefficient) when the data are discrete ratings to
polytomous or dichotomous items since sample correlation is designed for continuous vari-
ables. When data are indeed discrete and ordinal, it is often recommended to use polychoric
correlation over sample correlation, especially when the number of response options is rela-
tively small, because sample correlation can be biased in such data (Foldnes & Grønneberg,
2022; Garrido et al., 2013; Holgado-Tello et al., 2010; Olsson, 1979b). However, their dis-
crepancy may diminish with five or more response categories and when category thresholds
are symmetric (Rhemtulla et al., 2012). As we will show later, achieving a robust estimation
of the association between discrete ordinal variables necessitates the robust estimation of
models specifically designed to capture the association between such variables, accounting
for potential misspecifications of these models. In contrast, well-known robust alternatives to
sample correlation such as minimum covariance determinant estimators (Rousseeuw, 1985)
will not be effective when the data are discrete because they are designed for continuous
variables. To robustly estimate the polychoric model, we leverage a recently developed gen-
eral framework for robust estimation in discrete data (Welz, 2024b). Before we introduce
our estimator in the next section, we briefly review the polychoric correlation model and
maximum likelihood estimation thereof.

2.1 The polychoric model

Suppose we observe two ordinal discrete variables, X and Y , that take values in the sets X =
{1, 2, . . . , Kx} and Y = {1, 2, . . . , Ky}, respectively. The assumption that the sets contain
adjacent integers is without loss of generality. One either observes realizations of X and Y
directly or by means of aKx×Ky contingency table that cross-tabulates observed frequencies.
Further assume that there exist two latent random variables, ξ and η, that govern the
observed discrete variables as follows:

X =



1 if ξ < a1,

2 if a1 ≤ ξ < a2,

3 if a2 ≤ ξ < a3,
...

Kx if aKx−1 ≤ ξ,

and Y =



1 if η < b1,

2 if b1 ≤ η < b2,

3 if b2 ≤ η < b3,
...

Ky if bKy−1 ≤ η,

(1)

where the (unobserved) parameters a1 < a2 < · · · < aKx−1 and b1 < b2 < · · · < bKy−1 are
called thresholds. Given a sample of (X, Y ), the primary statistical problem is to estimate
the correlation between the latent variables ξ and η, denoted ρ = Cor [ξ, η]. If one assumes
that (ξ, η) are bivariate standard normally distributed with correlation ρ ∈ (−1, 1), the
correlation parameter ρ is called the polychoric correlation coefficient of X and Y , and
process (1) gives rise the polychoric model. In this model, the process of mapping latent
variables to discrete responses in (1) depends on d = Kx +Ky − 1 parameters, namely the
polychoric correlation coefficient and two sets of thresholds, which are jointly collected in a
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parameter vector

θ =
(
ρ, a1, a2, . . . , aKx−1, b1, b2, . . . , bKy−1

)⊤
.

Since the polychoric model assumes (ξ, η) to be standard normally distributed with cor-
relation ρ, the process (1) implies that the probability of observing a contingency table
cell (x, y) ∈ X × Y is given by

pxy(θ) = Pθ [X = x, Y = y] =

∫ ax

ax−1

∫ by

by−1

ϕ2 (t, s; ρ) ds dt, (2)

where we use the conventions a0 = b0 = −∞, aKx = bKy = +∞, and

ϕ2 (u, v; ρ) =
1

2π
√

1− ρ2
exp

(
−u2 − 2ρuv + v2

2(1− ρ2)

)
denotes the density of the bivariate standard normal distribution function with correla-
tion ρ ∈ (−1, 1) at some u, v ∈ R, with corresponding distribution function

Φ2 (u, v; ρ) =

∫ u

−∞

∫ v

−∞
ϕ2 (t, s; ρ) ds dt.

One collectively refers to the probabilities (2) as the polychoric model. This model is
parametrized by the d-dimensional vector θ, so model fitting necessitates estimating the
parameters in θ, including the object of primary interest, the polychoric correlation co-
efficient ρ. To distinguish between arbitrary parameter vectors θ and the “true” pa-
rameter under which the polychoric model generates data, denote this true parameter

by θ∗ =
(
ρ∗, a∗,1, . . . , a∗,Kx−1, b∗,1, . . . , b∗,Ky−1

)⊤
. Correspondingly, the statistical problem

is to estimate θ∗, which is typically done by maximum likelihood.

2.2 Maximum likelihood estimation

Suppose we observe a sample {(Xi, Yi)}Ni=1 of N independent copies of (X, Y ) generated by
process (1). Denote by

Nxy =
N∑
i=1

1 {Xi = x, Yi = y}

the empirical frequency of a cell (x, y) ∈ X × Y . We are interested in estimating the
polychoric correlation coefficient ρ = Cor [ξ, η] as well as the thresholds (a1, . . . , aKx−1)

⊤

and
(
b1, . . . , bKy−1

)⊤
in the polychoric model (2). The maximum likelihood estimator (MLE)

of the the true parameter vector θ∗ is then given by

θ̂ MLE
N = argmax

θ∈Θ

{∑
x∈X

∑
y∈Y

Nxy log (pxy(θ))

}
, (3)
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where

Θ =

((
ρ,
(
ai
)Kx−1

i=1
,
(
bj
)Ky−1

j=1

)⊤ ∣∣∣ ρ ∈ (−1, 1), a1 < · · · < aKx−1, b1 < · · · < bKy−1

)
is a set of parameters θ that rules out degenerate cases that are not permitted by the
polychoric model, like ρ = ±1 or thresholds that are not strictly monotonically increasing.
This estimator, its computational details, as well as its statistical properties are derived in
Olsson (1979a). In essence, if the polychoric model (2) is correctly specified—that is, (ξ, η)
are indeed bivariate standard normal—and the sample {(Xi, Yi)}Ni=1 comprises independent

and identical draws from this model, then estimator θ̂ MLE
N is unbiased and consistent for

the true θ∗, and is asymptotically normally distributed with the smallest possible variance.
As a computationally attractive alternative to estimating all parameters in θ∗ simulta-

neously, one may consider a “2-step-approach” where only the correlation coefficient ρ∗ is
estimated via maximum likelihood, but not the thresholds. In this approach, one estimates
in a first step the thresholds as quantiles of the univariate standard normal distribution,
evaluated at the observed cumulative marginal proportion of each cell. Formally, in the
2-step-approach, thresholds a∗,x and b∗,y are respectively estimated via

âx = Φ−1
1

(
1

N

x∑
k=1

∑
y∈Y

Nky

)
and b̂y = Φ−1

1

(
1

N

∑
x∈X

y∑
l=1

Nxl

)
,

for x = 1, . . . , Kx − 1 and y = 1, . . . , Ky − 1, where Φ−1
1 (·) denotes the quantile function

of the univariate standard normal distribution. Then, taking these threshold estimates as
fixed in the polychoric model, one estimates in a second step the only remaining parame-
ter, correlation coefficient ρ∗, via maximum likelihood. The main advantage of the 2-step
approach is reduced computational time, while it comes at the cost of being theoretically
non-optimal (Olsson, 1979a). As it turns out, another disadvantage of the 2-step-approach
is that it cannot be made robust against nonnormality, so in our robust method, we need to
estimate all parameters in θ∗ simultaneously.

2.3 Non-robustness of maximum likelihood

Based on simulation studies, maximum likelihood estimation of the polychoric model was ini-
tially believed to be fairly robust to moderate violations of the latent normality assumption
(e.g. Li, 2016; Flora & Curran, 2004; Coenders et al., 1997). However, the simulation design
employed in these studies turned out to be equivalent to simulating exactly normally dis-
tributed data (Grønneberg & Foldnes, 2019). Using updated simulation designs that ensure
proper violation of the normality assumption, Foldnes & Grønneberg (2022) conclude that
maximum likelihood estimation of polychoric correlation is in fact highly sensitive to such
violations, leading to potentially large biases. In the robust statistics literature, maximum
likelihood estimation has been mathematically shown to be heavily biased even when the
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Figure 1: Simulated data with Kx = Ky = 5 response options where the polychoric model is
misspecified due to a fraction ε = 0.15 of nonnormal data. The gray dots represent random draws
of (ξ, η) from the polychoric model with ρ∗ = 0.5, whereas the orange dots represent draws from
a different distribution that inflates cell (x, y) = (5, 1). The blue lines indicate the location of the
thresholds. In each cell, the numbers in parentheses denote the population probability of that cell
under the true polychoric model.

assumed model is only slightly misspecified (e.g. Maronna et al., 2018; Huber & Ronchetti,
2009; Hampel et al., 1986). Notwithstanding, we stress that also sample correlation is prone
to violations of assumptions (Raymaekers & Rousseeuw, 2021), even when the data are dis-
crete (Welz et al., 2023). Hence, robustly estimating association between discrete ordinal
variables requires new estimation methods, which is the contribution of this paper.

3 Robust estimation of polychoric correlation

3.1 Conceptualizing model misspecification

We say that that the polychoric model is misspecified when at least some of the observed
data have been generated by a different model. More specifically, we consider a situation
where only a fraction (1 − ε) of the latent realizations of (ξ, η) follow a bivariate standard
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normal distribution with true correlation parameter ρ∗, whereas a fraction ε ∈ [0, 1] come
from some different unspecified distribution, G. It follows that in this situation, the latent
variables (ξ, η) are jointly distributed according to the mixture distribution

(u, v) 7→ Fε(u, v) = (1− ε)Φ2 (u, v; ρ∗) + εG(u, v), (4)

for u, v ∈ R. We call ε the degree of misspecification, G the misspecifying distribution, and Fε

the misspecified distribution. Neither ε nor G are assumed to be known, and subsequently
both quantities are left completely unspecified in practice. Conceptualizing model misspeci-
fication through a misspecified distribution Fε is standard in the robust statistics literature,
and has been proposed in the seminal work of Huber (1964). Observe that when the de-
gree of misspecification is zero, that is, ε = 0, then there is no misspecification so that the
polychoric model is correctly specified.

Leaving the misspecifying distribution G and misspecification degree ε in mixture dis-
tribution (4) unspecified means that we are not making any assumption whatsoever on the
degree, magnitude, or type of misspecification (which is possibly absent altogether). Hence,
in our context of responses to rating items, the polychoric model can be misspecfied due to
an unlimited variety of reasons, for instance but not limited to careless/inattentive respond-
ing (e.g., straightlining, pattern responding, random-like responding), misresponses, item
misunderstanding, or accurate responses that are simply not generated by latent normality.

Figure 1 visualizes a simulated example of bivariate data drawn from misspecified dis-
tribution Fε, where a fraction of ε = 0.15 of the data follow a (misspecifying) distribution
with mean (2,−2)⊤ (orange dots), whereas the remaining data are generated by a bivariate
standard normal distribution with correlation ρ∗ = 0.5 (gray dots). In this example, the
data from the misspecifying distribution will primarily inflate the cell (x, y) = (5, 1), in the
sense that this cell will have a larger empirical frequency than the polychoric model allows
for, since the probability of this cell is nearly zero at the polychoric model yet many realized
responses will populate it. Consequently, due to misspecification of the (polychoric) model,
a maximum likelihood estimate of ρ∗ on these data will not be consistent for ρ∗ (Maronna
et al., 2018; Huber & Ronchetti, 2009; Hampel et al., 1986). Indeed, calculating the MLE
using the data plotted in Figure 1 yields an estimate of ρ̂ MLE

N = −0.05, which is far off
from the true ρ∗ = 0.5. In contrast, our proposed robust estimator, which is calculated from
the exact same information as the MLE and is defined in the next section, yields a fairly
accurate estimate of 0.45.

3.2 The estimator

Motivated by the MLE’s inconsistency when the polychoric model is misspecified, we propose
an estimator of θ∗ that is more robust to misspecification when present, but yields the
asymptotically same estimate as the MLE when the polychoric model is correctly specified.
For each cell (x, y) ∈ X × Y , our estimator minimizes a certain disparity between empirical
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relative cell frequencies,

f̂N(x, y) = Nxy/N =
1

N

N∑
i=1

1 {Xi = x, Yi = y} ,

and the theoretical cell probabilities pxy(θ) returned by the polychoric model (2) at a pa-
rameter θ. Specifically, the estimator minimizes with respect to θ the loss function

L
(
θ, f̂N

)
=
∑
x∈X

∑
y∈Y

φ

(
f̂N(x, y)

pxy(θ)

)
pxy(θ), (5)

where φ : [0,∞) → R is a prespecified function that will be defined momentarily. The

proposed estimator θ̂N is given by the value minimizing the objective loss over Θ,

θ̂N = argmin
θ∈Θ

L
(
θ, f̂N

)
. (6)

Estimators that minimize a loss function of the type in (5) are called minimum dispar-
ity estimators (Lindsay, 1994) because they minimize a certain disparity between empirical

probabilities (f̂N(x, y) here) and theoretical probabilities (pxy(θ) here). A small disparity
indicates that the assumed model is able to fit observed data well. The disparity is governed
by the choice of the function φ(·). Many well-known estimators can be written as mini-
mum disparity estimators, including the MLE, through the choice of φ(·) (Victoria-Feser &
Ronchetti, 1997; Lindsay, 1994). In the following, we motivate a specific choice of φ(·) that
makes the estimator θ̂N less susceptible to misspecification of the polychoric model.

The fraction f̂N(x, y)/pxy(θ) in (5) is called a Pearson residual2 (Lindsay, 1994) and can
be interpreted as a goodness-of-fit measure for cell (x, y). Values close to 1 indicate a good
fit between data and assumed model at θ, whereas values toward 0 or +∞ indicate a poor
fit. Indeed, cells whose observations are primarily generated by a nonnormal distribution
will generally have a Pearson residual away from 1. Hence, to achieve robustness to such
misspecifcation, cell frequencies that cannot be modeled well by the polychoric model, as
indicated by their Pearson residual being away from 1, should be downweighted in the
estimation procedure such that they do not over-proportionally affect the fit. Such robustness
can be achieved by choosing an appropriate function for φ(·) in loss function (5). We propose
to choose the following specification, suggested by Ruckstuhl & Welsh (2001) for robustly
fitting the binomial model,

φ(z) =

{
z log(z) if z ∈ [0, c],

z(log(c) + 1) if z > c,
(7)

2Technically, Lindsay (1994) defines Pearson residuals as f̂N (x, y)/pxy(θ)−1. We renounce on subtracting
the value 1 because it makes notation simpler in this paper.
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Figure 2: Visualization of the function φ(z) in (7) (left panel) and its derivative (right panel),
for c = 1.6 (vertical dashed blue lines).

where c ∈ [1,∞] is a prespecified tuning constant.3 Figure 2 visualizes this function for
the example choice c = 1.6. Note that function φ(·) is convex, rendering the estimator’s
optimization problem in (6) convex.

It is easy to see that for the choice c = +∞ in function φ(·), minimizing the loss (5) is

equivalent to maximizing the log-likelihood objective in (3), meaning that the estimator θ̂N is

equal to θ̂ MLE
N for this choice of c. More specifically, if a Pearson residual z = f̂N (x,y)

pxy(θ)
of a cell

(x, y) ∈ X × Y is such that z ∈ [0, c] for fixed c ≥ 1, then the estimation procedure behaves
at this cell like in maximum likelihood estimation. If this Pearson residual z equals 1,
then its associated cell can be fitted perfectly with the polychoric model, so at this cell
the estimation procedure will behave like maximum likelihood regardless of the choice of
c ≥ 1. In the absence of misspecification (ε = 0), f̂N(x, y)

a.s.−→ pxy(θ∗) as N → ∞ for all
(x, y) ∈ X × Y (see e.g., Chapter 19.2 in Van der Vaart, 1998), meaning that all Pearson

residuals are asymptotically equal to 1. In other words, if there is no misspecification, θ̂N

is asymptotically equivalent to θ̂ MLE
N no matter the choice of tuning constant c. On the

other hand, if a cell’s Pearson residual is far away from 1, it cannot be fitted well with the
polychoric model, which is typically indicative of the polychoric model being misspecified.
In this case, the cell should not be treated like in maximum likelihood estimation because
maximum likelihood is not consistent under misspecification. Instead, the cell’s influence
on the final estimate should be downweighted to avoid that cells that cannot be fitted well
dominate the fit, which happens in maximum likelihood. Such downweighting is employed
by function φ(z) in (7) whenever z > c ≥ 1, that is, the Pearson residual is sufficiently far
away from the ideal value 1, where the choice of c governs what is deemed “sufficiently far”.
Indeed, for values z > c, the function φ(z) increases only linearly with z, as opposed to the
non-linear exponential increase when z ≤ c. The notion of requiring nonlinear effects for

3Equation (7) is actually just a special case of a more general formulation in Ruckstuhl & Welsh (2001).
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the bulk of the data and linear effects in its tails is similar to classic robust estimation as
in Huber (1964).

It is shown in Figure 2 how φ(z) transitions from exponential growth to linear growth
at z = c, as well as the boundedness of its first derivative when c is finite. Hence, if c is
finite, any Pearson residual can only have a bounded effect on the final estimator, as opposed
to unbounded effects in maximum likelihood estimation where c = +∞. Thus, we achieve
robustness against misspecification through the choice of c. The closer to 1 one chooses c,
the more robust the estimator becomes. However, there is a well-known tradeoff between
robustness and efficiency for robust estimators: the more robust an estimator, the more
estimation variance is introduced (e.g. Huber & Ronchetti, 2009). Therefore, by choosing c,
one is effectively choosing between robustness and efficiency. A characterization of the this
tradeoff is work in progress.

With the proposed choice of φ(·), we stress that our estimator θ̂N in (6) has the same time
complexity as maximum likelihood, that is, O

(
Kx × Ky

)
, since one needs to calculate the

Pearson residual of all Kx×Ky cells for every candidate parameter value. Consequently, our
proposed estimator does not incur any additional computational cost compared to maximum
likelihood, and therefore robustness can be achieved without having to pay a computational
price.

3.3 Statistical properties

3.3.1 Estimand

Before we can turn to deriving the statistical properties of estimator θ̂N in (5) with (7)
as the choice of function φ(·), we first require some additional notation. For unknown
misspecification degree ε ∈ [0, 1], denote by

fε (x, y) = (1− ε)pxy(θ∗) + ε

∫ a∗,x

a∗,x−1

∫ b∗,y

b∗,y−1

dG

the unobserved probability that cell (x, y) ∈ X×Y is sampled under the possibly misspecified
distribution Fε in (4). Note that f0(x, y) = pxy(θ∗) if there is no misspecification (ε = 0).

When a sample is generated by distribution Fε, the relative empirical cell frequency f̂N(x, y)
is a (strongly) consistent estimator of fε (x, y) when N → ∞.

With this definition in mind, we now address what the estimator θ̂N in (6) actually
estimates. Its estimand is given by

θ0 = argmin
θ∈Θ

L
(
θ, fε

)
.

This minimization problem is simply the population analogue to the minimization problem
in (6) that the sample-based θ̂N solves because the fε (x, y) are the population analogues to

the f̂N(x, y). In the absence of misspecification, θ0 equals the true parameter θ∗. However, in
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the presence of misspecification (ε > 0), it is generally different from θ∗. How much different
it is depends on the degree of misspecification ε as well as the choice of tuning constant c
in φ(·). In general, the larger ε (more severe misspecification) and c (less downweighting of
hard-to-fit cells), the further θ0 is away from θ∗. Hence, for fixed misspecification degree ε,
the MLE (c = +∞) will estimate a parameter that is farther or equally far away from the
true θ∗ than for finite choices of c. Correspondingly, finite choices of c lead to an estimator
that is at least as accurate as the MLE, and more accurate under misspecification of the
polychoric model. A relevant question is whether the true parameter θ∗ can be identified
when ε > 0 such that it can be estimated using θ̂N combined with a correction term. This
question is closely related to point-identifying θ∗ under misspecification, which is work in
progress.

3.3.2 Assumptions

Throughout this section, we assume that the number of response categories, Kx and Ky, are

fixed and known, and that the sample {(Xi, Yi)}Ni=1 used to compute an estimate θ̂N has
been generated by the process in (1) where the latent {(ξi, ηi)}Ni=1 are draws from distribu-
tion Fε in (4) with unobserved misspecification degree ε ∈ [0, 1] and unknown misspecifying
distribution G. In the following, we list a set of assumptions that will be entertained in the
asymptotic analysis of θ̂N . These assumptions are based on Welz (2024b).

Assumption Set A. Suppose that the following assumptions hold true.

A.1 c ∈ [1,+∞],

A.2 Θ ⊂ Rd is compact, where d = Kx +Ky − 1 denotes the number of parameters in the
polychoric model (2),

A.3 θ0 = argminθ∈Θ L(θ, fε) is a unique minimum, and θ0 is an interior point of Θ,

A.4 pxy(θ) > 0 for all θ ∈ Θ and all (x, y) ∈ X × Y,

A.5 #
{
(x, y) ∈ X × Y : fε (x, y) > 0

}
> d,

A.6 fε(x,y)
pxy(θ0)

̸= c for all (x, y) ∈ X × Y.

Assumption A.1 ensures that function φ(·) exhibits meaningful behavior when evaluated
at Pearson residuals, such as the ideal residual value 1 being included in the interval [0, c].
Compactness of the parameter space (Assumption A.2) is primitive and required for a tech-

nicality when proving consistency of θ̂N .
4 Uniqueness of a global minimum that is well

separated from the boundary (Assumption A.3) is a common assumption in the literature
on M -type estimators (e.g., Chapter 5.2 in Van der Vaart, 1998) like the one presented in

4This assumption can possibly be modified to Θ being open by equipping it with a specific topological
structure.
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this paper. The assumption of strictly positive probabilities (A.4) is standard in the liter-
ature on minimum-disparity-type estimators (e.g., Cressie & Read, 1984; Victoria-Feser &
Ronchetti, 1997) and rules out that one divides by zero when computing Pearson residuals.
Assumption A.5 imposes that there are more populated (non-empty) cells than parameters
in the polychoric model. In other words, to estimate all model parameters, there must be
more sources of variation (populated cells) than parameters. One may view this assumption
as a rank condition that ensures invertibility of the optimization problem’s Hessian matrix.
Finally, Assumption A.6 imposes that the population Pearson residual at the global mini-
mum is not equal to tuning constant c. This is again a primitive assumption required for a
technicality in the proof. This assumption does not have practical implications because such
an event has probability zero.

We emphasize that no assumption restricts the type, source, or magnitude of potential
misspecification of the polychoric model. In addition, most assumptions are not unique to
our estimator. In fact, Assumptions A.2–A.5 are also required for consistency and asymptotic
normality of the MLE. Only Assumptions A.1 and A.6 are specific to our proposed robust
estimator because they concern tuning constant c.

3.3.3 Asymptotic analysis

The following theorem establishes almost sure (a.s.) convergence of θ̂N for θ0.

Theorem 1 (Consistency). Under Assumptions A.1–A.4, it holds true that

θ̂N
a.s.−→ θ0,

as N → ∞.

This theorem follows immediately from Theorem 1 in Welz (2024b).
We now study the limit distribution of the estimator. Doing so necessitates additional

notation. For fixed tuning constant c ≥ 1, let

w(z) = 1 {z ∈ [0, c]}+ c1 {z > c} /z for z ≥ 0,

with first derivative
w′(z) = 01 {z ∈ [0, c]} − c1 {z > c} /z2,

and further define the d-dimensional gradient of log (pxy(θ)) for cell (x, y) ∈ X × Y at
parameter θ ∈ Θ as

sxy(θ) =
1

pxy(θ)

(
∂

∂θ
pxy(θ)

)
,

where one can write for the gradient of pxy(θ)

∂

∂θ
pxy(θ) =

∂

∂θ
Φ2 (ax, by; ρ)−

∂

∂θ
Φ2 (ax−1, by; ρ)−

∂

∂θ
Φ2 (ax, by−1; ρ)+

∂

∂θ
Φ2 (ax−1, by−1; ρ) ,
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see e.g. Olsson (1979a, equation 4), as well as the d× d Hessian matrix of log (pxy(θ)) as

Qxy(θ) =
1

pxy(θ)

(
∂2

∂θ∂θ⊤pxy(θ)

)
− sxy(θ)sxy(θ)

⊤.

We derive closed-form expressions of all components in Qxy(θ) in Appendix A. In addition,
for K = Kx ×Ky the total number of cells and d-dimensional vectors

wxy (θ) = sxy(θ)1

{
fε (x, y)

pxy(θ)
∈ [0, c]

}
,

define the d×K matrix

W (θ) =(
w11 (θ) , · · · ,w1,Ky (θ) ,w21 (θ) , · · · ,w2,Ky (θ) , · · · ,wKx,1 (θ) ,wKx,2 (θ) , · · · ,wKx,Ky (θ)

)
that row-binds all K vectors of sxy(θ) multiplied by an indicator that takes value 1 when
associated population Pearson residual is in the MLE-part of the function φ(·) in (7) and 0
otherwise. In similar fashion, define the K-dimensional vector

fε =
(
fε (1, 1) , . . . , fε (1, Ky) , fε (2, 1) , . . . , fε (2, Ky) , . . . , fε (Kx, 1) , fε (Kx, 2) , . . . , fε (Kx, Ky)

)⊤
that holds all K evaluations of the function fε, and put

Λ = diag(fε)− fεf
⊤
ε .

The next theorem establishes root-N consistency and asymptotic normality of the esti-
mator. This theorem follows immediately from Theorem 2 in Welz (2024b).

Theorem 2 (Asymptotic normality). Grant the assumptions of Assumption Set A. Then
√
N
(
θ̂N − θ0

)
d−→ Nd

(
0,Σ (θ0)

)
,

as N → ∞, where
Σ (θ) = M (θ)−1U (θ)M (θ)−1 ,

with d× d symmetric matrices

U (θ) = W (θ)ΛW (θ)⊤ and

M (θ) =
∑
x∈X

∑
y∈Y

fε (x, y)

(
w′

(
fε (x, y)

pxy(θ)

)
fε (x, y)

pxy(θ)
sxy(θ)sxy(θ)

⊤ − w

(
fε (x, y)

pxy(θ)

)
Qxy(θ)

)
.

A strongly consistent estimator of the unobserved asymptotic covariance matrix Σ (θ0)
can be constructed as follows. Replace all population class probabilities fε (x, y) by their cor-

responding empirical counterparts f̂N(x, y) in matrices W (θ) ,M (θ), and Λ. Then exploit

the plug-in principle and evaluate U (θ) and M (θ) at the point estimate θ̂N . Denote the

ensuing plug-in estimator by Σ
(
θ̂N

)
, which is strongly consistent for Σ (θ0) by Theorem 1

and the continuous mapping theorem.
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3.4 Goodness-of-fit test

Suppose we wish to test the null hypothesis that a cell in a Kx × Ky contingency table is
outlying in the sense that it cannot be fitted well by the polychoric model, which is indicative
of model misspecification. This notion can be conceptualized by means of Pearson residuals.
Recall that a Pearson residual of value 1 indicates that the corresponding cell can be fitted
well, whereas a Pearson residual significantly larger than 1 indicates poor fit. For a cell
(x, y) ∈ X × Y , this translates into the natural null hypothesis with one-sided alternative

H0 :
f̂N(x, y)

pxy(θ0)
= 1 vs. H1 :

f̂N(x, y)

pxy(θ0)
> 1,

which is equivalent to

H0 : pxy(θ0) = f̂N(x, y) vs. H1 : pxy(θ0) < f̂N(x, y). (8)

Ideally, a test for such a hypothesis will reject H0 if the polychoric model is misspecified
for that cell, and sustain H0 if it is correctly specified for that cell. It turns out that a test
statistic that satisfies these two desirable properties is given by

ZN =
pxy(θ̂N)− f̂N(x, y)√

σ2
xy(θ0)

/
N

, (9)

where
σ2
xy (θ) = gxy(θ)

⊤Σ (θ) gxy(θ)

for gradient

gxy(θ) =
∂pxy(θ)

∂θ
.

By Theorem 1 and the continuous mapping theorem, the variance term σ2
xy (θ0) can be

consistently estimated by σ2
xy

(
θ̂N

)
. The following theorem, which follows immediately from

Theorem 3 in Welz (2024b), establishes validity and exactness of test statistic ZN for testing

the null hypothesis H0 : f̂N(x, y) = pxy(θ0).

Theorem 3 (Limit distribution of test statistic). Grant the assumptions of Assumption
Set A. Then, under the null hypothesis in (8), the test statistic ZN in (9) possesses the
following limit distribution:

ZN
d−→ N(0, 1),

as N → ∞.

It follows that the test is exact in the statistical sense. In practice, it is only approximately

exact because the variance term σ2
xy (θ0) is unobserved and must be estimated by σ2

xy

(
θ̂N

)
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in order to compute an approximate test statistic

pxy(θ̂N)− f̂N(x, y)√
σ2
xy(θ̂N)

/
N

.

In addition, it should be noted that using this test to test all Kx × Ky cells for being
outlying creates a multiple testing problem. We therefore recommend to adjust for multiple
comparisons, for instance through the procedure of Benjamini & Hochberg (1995), when
testing multiple cells for outlyingness.

4 Simulation study

To verify the statistical properties of the proposed estimator and assess its performance in
practice, we employ a simulation study. Let there be Kx = Ky = 5 response categories for
each of the two rating variables and define the true thresholds in the polychoric model as

a∗,1 = b∗,1 = −1.5, a∗,2 = b∗,2 = −0.5, a∗,3 = b∗,3 = 0.5, a∗,4 = b∗,4 = 1.5,

and let the true polychoric correlation coefficient be ρ∗ = 0.5. To simulate misspecification
of the polychoric model, we let a fraction ε of the data be generated by a misspecifying
bivariate normal distribution with mean (2,−2)⊤, variances (0.2, 0.2)⊤, and zero covariance
(and therefore zero correlation). This misspecifying distribution will inflate the empirical
frequency of cells (x, y) ∈ {(5, 1), (4, 3), (5, 2)}, in the sense that they have a higher realization
probability than under the true polychoric model. In fact, the data plotted in Figure 1 were
generated by this process for misspecification degree ε = 0.15, and one can see in this
figure that particularly cell (x, y) = (5, 1) is sampled quite frequently although it only has
a near-zero probability at the true polychoric model. The data points causing these three
cells to be inflated are instances of negative leverage points. Here, such leverage points drag
correlational estimates away from a positive value towards zero or, if there are sufficiently
many of them, even a negative value.

For misspecification degrees ε ∈ {0, 0.1, 0.2}, we sample N = 1, 000 responses from this
data generating process and estimate the true parameter θ∗ with the MLE as well as our
proposed estimator with tuning constant set to c = 1.6, since this choice yielded a good
compromise between robustness and efficiency in further simulation studies. We repeat this
procedure for 1,000 simulated datasets. As performance measures, we calculate the average
bias, standard deviation across repetitions, coverage, and length of confidence intervals at
significance level α = 0.05. The coverage is defined as proportion of (1 − α)-th confidence
intervals [ρ̂N ∓ q1−α/2 · SE(ρ̂N)] that contain the true ρ∗, where q1−α/2 is the (1 − α/2)-th
quantile of the standard normal distribution and SE(ρ̂N) is the standard error of ρ̂N , which
is constructed using the limit theory developed in Theorem 2. The length of a confidence
interval is given by 2 · q1−α/2 · SE(ρ̂N).
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Figure 3: Boxplot visualization of the bias of two estimators, the MLE and the proposed robust
estimator with c = 1.6, across 1,000 simulated datasets. The top panel shows the mean squared
error for the whole vector θ∗ (that is, ∥θ̂N − θ∗∥2 ), whereas the bottom panel shows the bias of
the polychoric correlation coefficient, ρ̂N − ρ∗, which is the first coordinate in θ̂N − θ∗.

17



Misspecification Estimator ρ̂N Bias StDev Coverage CI length

ε = 0
Robust 0.504 0.004 0.027 0.930 0.104
MLE 0.500 0.000 0.026 0.943 0.102

ε = 0.1
Robust 0.466 −0.034 0.038 0.911 0.152
MLE 0.097 −0.403 0.029 0.000 0.134

ε = 0.2
Robust 0.439 −0.061 0.051 0.951 0.220
MLE −0.172 −0.672 0.028 0.000 0.133

Table 1: Performance measures of the maximum likelihood estimator (MLE) and our robust
estimator across 1,000 simulation repetitions with varying degrees of misspecification. The true
polychoric correlation coefficient is ρ∗ = 0.5. The performance measures are the average point
estimate of the polychoric correlation coefficient, ρ̂N , average bias (ρ̂N −ρ∗), the standard deviation
of the ρ̂N (“StDev”), the estimator’s coverage with respect to the true ρ∗ at significance level α =
0.05, as well as the length of the estimator’s confidence interval, again at level α = 0.05.

Figure 3 visualizes the bias of each estimator with respect to the true θ∗ across the 1,000
simulated datasets. In the absence of misspecification, both MLE and the robust estimator
yield accurate estimates of true θ∗ (in terms of mean squared error) and, in particular,
the true polychoric correlation ρ∗. Both estimates are nearly equivalent to one another
in the sense that their point estimates, standard deviation, and coverage at significance
level α = 0.05 are very similar (Table 1). However, when we introduce misspecification, the
MLE and robust estimator yield noticeably different results. At misspecification degree ε =
0.1, the MLE is substantially biased with an average estimate of 0.097, corresponding to
a bias of −0.403 and zero coverage, whereas the robust estimator maintains accuracy with
an average estimate of 0.466, which corresponds to only a minor bias of −0.034 and a
good coverage of 0.911 (Table 1). When the misspecification is increased to ε = 0.2, the
contrast between the two estimators becomes even stronger. While the robust estimator is
still remarkably close to the truth with a small bias of −0.061, the MLE produces estimates
that are not only severely biased (bias of −0.672), but also sign-flipped: While the true
correlation is strongly positive (0.5), the MLE’s estimate is considerably negative (−0.172).
It is worth noting that in the presence of misspecification, the confidence intervals of the
robust estimator are wider than those of the MLE (see Table 1). This is expected because
of the well-known trade-off between robustness and efficiency: An estimator that is designed
to reduce bias, like a robust estimator, will inevitably have a larger estimation variance (e.g.
Huber & Ronchetti, 2009). These wider confidence intervals furthermore explain why the
robust estimator improves its coverage in Table 1 when the degree of misspecification is
increased from 0.1 to 0.2.

This simulation study demonstrated that already a small degree of misspecificaion of the
polychoric model can render the MLE unreliable, while our robust estimator retains good
accuracy even in the presence of considerable misspecificaion. On the other hand, when the
model is correctly specified, both estimators produce equivalent results.

18



5 Empirical application

5.1 Background and study design

We demonstrate our proposed method on empirical data by using a subset of the 100 unipolar
markers of the Big-5 personality traits (Goldberg, 1992). Each marker is a an item com-
prising a single English adjective (such as “bold” or “timid”) asking respondents to indicate
how accurately the adjective describes their personality using a 5-point Likert-type rating
scale (very inaccurate, moderately inaccurate, neither accurate nor inaccurate, moderately
accurate, and very accurate). Here, each Big-5 personality trait is measured with six pairs
of adjectives that are polar opposites to one another (such as “talkative” vs. “silent”), that
is, twelve items in total for each trait. It seems implausible that an attentive respondent
would choose to agree (or disagree) to both items in a pair of polar opposite adjectives.
Consequently, one expects a strongly negative correlation between polar adjectives if all
respondents respond attentively (Arias et al., 2020).

Arias et al. (2020) collect measurements of three Big-5 traits in this way, namely extro-
version, neuroticism, and conscientiousness.5 The sample that we shall use, Sample 1 in
Arias et al. (2020), consists of N = 725 online respondents who are all U.S. citizens, native
English speakers, and tend to have relatively high levels of reported education (about 90%
report to hold an undergraduate or higher degree). Concerned about respondent inattention
in their data, Arias et al. (2020) construct a factor mixture model for detecting inattentive
participants. Their model crucially relies on response inconsistencies to polar opposite ad-
jectives and is designed to primarily detect inattentive straightlining responding. They find
that inattentive responding is a sizable problem in their data. Their model estimates that
the proportion of inattentive participants amounts to 4.7% in the conscientiousness, 6% in
the neuroticism, and 7.3% in the extroversion scale. After some further analyses, the authors
conclude that if unaccounted for, inattentive responses can substantially deteriorate the fit of
theoretical models, produce spurious variance, and overall jeopardize the validity of research
results.

Due to the suspected presence of inattentive respodents, we apply our proposed method
to estimate the polychoric correlation coefficients between all

(
12
2

)
= 66 unique item pairs

in the neuroticism scale. The results of the remaining two scales are qualitatively similar
and are reported in Appendix B. For each item pair, we estimate the polychoric correlation
coefficient twice: via classic maximum likelihood and via our proposed robust alternative,
with tuning parameter c = 1.6. The results remain qualitatively similar for different finite
choices of c.

5Arias et al. (2020) synonymously refer to neuroticism as emotional stability. Furthermore, in addition to
the three listed traits, Arias et al. (2020) collect measurements of the trait dispositional optimism by using
a different instrument, and another scale that is designed to not measure any construct. We do not consider
these scales in this empirical demonstration.

19



N6_N

N6_P

N5_N

N5_P

N4_N

N4_P

N3_N

N3_P

N2_N

N2_P

N1_N

N1_P

N1_P N1_N N2_P N2_N N3_P N3_N N4_P N4_N N5_P N5_N N6_P N6_N

0.0 0.1 0.2 0.3
|Robust| − |MLE|

Figure 4: Difference between absolute estimates for the polychoric correlation coefficient of our
robust estimator and the MLE for each item pair in the neuroticism scale, using the data of Arias
et al. (2020). The items are “calm” (N1 P), “angry” (N1 N), “relaxed” (N2 P), “tense” (N2 N),
“at ease” (N3 P), “nervous” (N3 N), “not envious” (N4 P), “envious” (N4 N), “stable” (N5 P),
“unstable” (N5 N), “contented” (N6 P), and “discontented” (N6 N). For the item naming given
in parentheses, items with identical identifier (the integer after the first “N”) are polar opposites,
where a last character “P” refers to the positive opposite and “N” to the negative opposite. The
individual estimates of each method are provided in Table B.2 in Appendix B.

5.2 Results

Figure 4 visualizes the difference in absolute estimates for the polychoric correlation coef-
ficient between all 66 unique item pairs in the neuroticism scale. For all unique pairs, our
method estimates a stronger correlation coefficient than maximum likelihood. The differ-
ences in absolute estimates on average amount to 0.083, ranging from only marginally larger
than zero to a substantive 0.314. For correlations between polar opposite adjectives, the
average absolute difference between our robust method and MLE is 0.151. The fact that a
robust method consistently yields stronger correlation estimates than the MLE, particularly
between polar opposite adjectives, is indicative of the presence of negative leverage points,
which drag negative correlational estimates towards zero, that is, they attenuate the esti-
mated strength of correlation. Here, such negative leverage points could be the responses of
inattentive participants who report agreement or disagreement to both items in item pairs
that are designed to be negatively correlated. For instance, recall that it is implausible that
an attentive respondent would choose to agree (or disagree) to both adjectives in the pair
“envious” and “not envious” (cf. Arias et al., 2020). If sufficiently many such respondents ex-

20



MLE Robust
Parameter Estimate SE Estimate SE

ρ −0.618 0.025 −0.925 0.062

a1 −1.370 0.061 −1.570 0.276
a2 −0.476 0.043 −0.560 0.203
a3 0.121 0.042 0.109 0.187
a4 1.060 0.054 1.080 0.105

b1 −0.857 0.049 −0.905 0.073
b2 −0.004 0.041 −0.040 0.091
b3 0.608 0.045 0.640 0.364
b4 1.580 0.071 1.171 0.811

Table 2: Parameter estimates with standard errors (SEs) of the polychoric model for the neuroti-
cism adjective pair “envious” and “not envious” in the data of Arias et al. (2020), using maximum
likelihood (MLE) and our robust estimator with tuning constant c = 1.6. Each adjective item has
five ordinal answer categories.

ist, then the presumably strongly negative correlation between these two opposite adjectives
will be estimated to be weaker than it actually is.

To further investigate the presence of inattentive respondents who attenuate correlational
estimates, we study in detail the adjective pair “not envious” and “envious”, which featured
the largest discrepancy between the maximum likelihood estimate and robust estimate in
Figure 4, with an absolute difference of 0.314. The results of the two estimators are summa-
rized in Table 2. The maximum likelihood estimate of −0.618 for the polychoric correlation
coefficient seems remarkably weak considering that the two adjectives in question are po-
lar opposites.6 In contrast, its robust estimate estimate is given by −0.925, which seems
much more in line with what one would expect if all participants responded accurately and
attentively.

To study the potential presence of inattentive responses in each cell (x, y) for item
pair “envious” and “not envious”, Figure 5 visualizes the empirical relative frequen-
cies, f̂N(x, y), through dot size, as well as the associated Pearson residual at the robust

estimate, f̂N(x, y)/pxy(θ̂N), through dot color (the darker the blue shade, the larger). Im-
portantly, the color of cells whose Pearson residual exceed 5.48 has been fixed to red.7 This
truncation value is equal to the value of the smallest Pearson residual that is substantially
larger than the ideal value 1. We consider cells whose Pearson residual exceeds this trun-
cation value to have a poor fit at the polychoric model. This applies to a total of 12 cells,
some of which have enormous Pearson residuals. The Pearson residuals of the remaining 13

6For reference, the Pearson correlation coefficient between these two items is given by −0.562.
7The truncation of the color gradient in Figure 5 prevents that the color gradient is dominated by single

cells with extreme Pearson residuals, which would blur the distinction between well fitted and poorly fitted
cells.
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Figure 5: Dot plot of cells for the neuroticism item adjective pair “envious” and “not envious” in
the data of Arias et al. (2020), where each item has five Likert-type response options, anchored by
“very inaccurate” (= 1) and “very accurate” (= 5). Each dot’s size is proportional to the relative
empirical frequency of its associated cell, f̂N (x, y), whereas its color varies by the value of the cell’s
Pearson residual, f̂N (x, y)/pxy(θ̂N ), at robust parameter estimate with tuning constant c = 1.6:
The darker in blue a dot, the larger the value of the Pearson residual of its associated cell. The
color of cells that could not be fitted well is fixed to red, where we deem a fit poor if the Pearson
residual exceeds value 5.48 (which is the value of the smallest Pearson residual that is substantially
larger than ideal value 1).
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“Envious”
X \Y 1 2 3 4 5

“Not Envious”

1 < 0.0001 0.0002 0.8429 0.8274 0.8429
2 < 0.0001 0.0033 0.8429 0.9146 0.8274
3 0.8274 0.9896 0.8429 0.8429 0.8429
4 0.8429 0.9079 0.8863 0.5251 0.0003
5 0.8429 0.8429 0.5251 < 0.0001 < 0.0001

Table 3: p-values, adjusted for multiple comparisons by the procedure of Benjamini & Hochberg
(1995), of the cellwise goodness-of-fit test in Theorem 3 for the neuroticism adjective pair “envious”
and “not envious” in the data of Arias et al. (2020), where each item has five Likert-type response
options, anchored by “1 = very inaccurate” and “5 = very accurate”. The test statistics were
computed with robust estimates using tuning constant c = 1.6. Cells in boldface are those for
which the null hypothesis of unit Pearson residual is rejected at significance level α = 0.001 in favor
of the alternative of it being larger than one.

cells are reasonably close to ideal value 1, ranging from 0.65 to 1.42 with average 0.89. The
Pearson residuals as well as relative empirical frequencies of all cells can be found in Ta-
ble B.5 in the Appendix. It stands out that all poorly fitted cells are those whose responses
might be viewed as inconsistent. Indeed, response cells (x, y) = (1, 1), (1, 2), (2, 1), (1, 2)
indicate that a participant reports that neither “envious” nor “not envious” character-
izes them accurately, which are mutually contradicting responses, while for response cells
(x, y) = (4, 4), (4, 5), (5, 4), (5, 5) both adjectives characterize them accurately, which is again
contradicting. As discussed previously, such responses are likely due to inattentiveness.
The robust estimator suggests that such responses cannot be fitted well by the polychoric
model and subsequently downweighs their influence in the estimation procedure by map-
ping their Pearson residual with the linear part of the φ(·) function in (7). Notably, also
cells (x, y) = (1, 3), (3, 1), (3, 5), (5, 3) are classified as poorly fitted. These responses report
(dis)agreement to one opposite adjective, while being neutral about the other opposite. It
is beyond the scope of this paper to assess whether such response patterns are indicative of
inattentive responding, but the robust estimator suggests that such responses at least cannot
be fitted well by the polychoric model with the data of Arias et al. (2020).

Next, we perform the goodness-of-fit test derived in Theorem 3 for each response cell
to assess for which cells the polychoric model achieves a statistically significantly poor fit.
Table 3 presents the p-values for the hypothesis test in (8), adjusted for multiple comparisons
via the procedure of Benjamini & Hochberg (1995). Values for which the null hypothesis
is rejected at significance level α = 0.001 are in boldface. This choice of significance level
is deliberately extremely conservative because the literature on inattentive responding rec-
ommends overwhelming evidence in favor of inattention before one should label responses
as such (cf. Huang et al., 2012). At this significance level, we reject the null hypothesis of
a good fit for six cells, namely (x, y) = (1, 1), (2, 1), (1, 2), (5, 4), (4, 5), (5, 5). These six cells
comprise 5.52% of the entire sample. As discussed in the previous section, it seems likely that
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these responses are due to inattention because of inconsistent and contradictory responding.
Either way, our test offers strong empirical evidence that these cells are outlying in the sense
that they cannot be fitted well by the polychoric model and therefore lead to deteriorated
model fit. This is consistent with Arias et al. (2020), who find that even a relatively small
proportion of inconsistent responses can drastically reduce a model’s fit. In their analyses,
they estimate that 6% of all respondents in the neuroticism scale have been inattentive. Yet,
albeit similar, we emphasize that our estimate of 5.52% can be, if at all, understood as a
lower bound for the proportion of inattentive responding because of the extremely conser-
vative significance level we chose for our analyses. For instance, the null hypothesis of good
model fit was not rejected for the seemingly inconsistent response cell (x, y) = (2, 2) (rela-
tive empirical frequency of about 4%) with a p-value of approximately 0.003, but would have
been rejected at a slightly more liberal significance level. In addition, it is worth noting that
the null hypothesis was also not rejected for one more seemingly inconsistent response cell,
namely (x, y) = (4, 4), despite a relatively large Pearson residual of 12.66. This non-rejection
is likely due to low statistical power stemming from a small empirical frequency of this cell,
since it only counted 14 responses (out of 725). Similar reasoning applies to the remaining
four cells that were highlighted in red in Figure 4 but for which the null hypothesis of good
fit was not rejected, namely those who indicate (dis)agreement to one adjective, while being
neutral about its opposite. These four cells, (x, y) = (1, 3), (3, 1), (3, 5), (5, 3), only count
empirical frequencies of 2, 4, 2, and 4, respectively.

Overall, leveraging our robust estimator, we find strong evidence for the presence of
inattentive respondents in the data of Arias et al. (2020). While they substantially affect
the correlational estimate of the MLE, amounting to about −0.62, which is much weaker
than one would expect for polar opposite items, our robust estimator can withstand their
influence with an estimate of about −0.93 and also identify them by means of our proposed
test.

6 Conclusion

Motivated by the susceptibility of maximum likelihood estimation to model misspecification,
we propose a robust estimator of the polychoric model. Our estimator generalizes maximum
likelihood estimation, does not make any assumption on the magnitude or type of potential
misspecification, comes at no additional computational cost, and is consistent as well as
asymptotically normally distributed. In addition, we propose a novel exact test that tests
whether each individual cell in a contingency table can be fitted well by the polychoric model,
allowing one to trace back potential sources of model misspecification. The methodology
proposed in this paper is implemented in the free open source package robord (Welz, 2024a)
in the statistical programming environment R, although it is primarily developed in C++ to
maximize speed and computational performance.

We verify the enhanced robustness and theoretical properties of our estimator in simula-
tion studies and demonstrate its practical usefulness in an empirical application on a Big-5
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administration. We find compelling evidence for the presence of inattentive respondents
as source of model misspecification. For instance, in a rating item pair with polar oppo-
site content where a strong negative correlation is expected in the literature, our estimator
yields a correlational estimate of −0.93, whereas maximum likelihood yields only −0.62; It
follows that the robust estimate is more in line with the literature on this scale. Utilizing
our test, we find that the maximum likelihood’s lower-than-expected estimate is likely due
to a few possibly inattentive participants who gave mutually contradictory responses, while
our robust estimator can resist their influence.

Being substantially more robust to model misspecification than maximum likelihood, in
particular to inattentive or careless responses, our estimator allows for robust estimation of
correlation matrices of rating variables, which in turn allows for robust fitting of structural
equation models. Since our estimator does not require assumptions on the type of misspecifi-
cation, it could be especially useful in rating questionnaires without negatively worded items
or attention checks. We leave a detailed investigation to future research.
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A Expressions of first and second order derivatives

A.1 First order terms

For cell (x, y) ∈ X × Y and θ ∈ Θ, the gradient of pxy(θ) can be expressed as

∂pxy(θ)

∂θ
=

∂

∂θ
Φ2 (ax, by; ρ)−

∂

∂θ
Φ2 (ax−1, by; ρ)−

∂

∂θ
Φ2 (ax, by−1; ρ) +

∂

∂θ
Φ2 (ax−1, by−1; ρ) ,

(A.1)
see e.g. Olsson (1979a, equation 4). To characterize this gradient, we provide expressions
for individual partial derivatives of pxy(θ), that is,

∂pxy(θ)

∂θ
=

(
∂pxy(θ)

∂ρ
,
∂pxy(θ)

∂a1
, . . . ,

∂pxy(θ)

∂aKx−1

,
∂pxy(θ)

∂b1
, . . . ,

∂pxy(θ)

∂bKy−1

)⊤

.

First, for any u, v ∈ R, it can be shown (e.g. Drezner & Wesolowsky, 1990) that

∂

∂ρ
Φ2 (u, v; ρ) = ϕ2 (u, v; ρ) ,

as well as (e.g. Tallis, 1962)

∂

∂u
Φ2 (u, v; ρ) = ϕ1 (u) Φ1

(
v − ρu√
1− ρ2

)
,

where ϕ1 (·) and Φ1 (·) denote the density and distribution function, respectively, of the
univariate standard normal distribution. The complementary partial derivative with respect
to v follows analogously by symmetry.

It now follows immediately from (A.1) that the partial derivative of pxy(θ) with respect
to ρ is given by

∂pxy(θ)

∂ρ
= ϕ2 (ax, by; ρ)− ϕ2 (ax−1, by; ρ)− ϕ2 (ax, by−1; ρ) + ϕ2 (ax−1, by−1; ρ) ,

whereas the partial derivatives with respect to the individual thresholds are characterized
by

∂pxy(θ)

∂ak
=


∂

∂ax
Φ2 (ax, by; ρ)−

∂

∂ax
Φ2 (ax, by−1; ρ) if k = x,

− ∂

∂ax−1

Φ2 (ax−1, by; ρ) +
∂

∂ax−1

Φ2 (ax−1, by−1; ρ) if k = x− 1,

0 otherwise,

for k = 1, . . . , Kx − 1. An expression for ∂pxy(θ)

∂bk
can be derived analogously.
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A.2 Second order terms

In this section, we provide expressions for the individual coordinates of the d× d symmetric
Hessian matrix of pxy(θ), that is,

∂2pxy(θ)

∂θ∂θ⊤ =


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This Hessian matrix can alternatively be expressed as follows, which follows by (A.1):

∂2pxy(θ)

∂θ∂θ⊤ =

∂2

∂θ∂θ⊤Φ2 (ax, by; ρ)−
∂2

∂θ∂θ⊤Φ2 (ax−1, by; ρ)−
∂2

∂θ∂θ⊤Φ2 (ax, by−1; ρ) +
∂2

∂θ∂θ⊤Φ2 (ax−1, by−1; ρ) .

(A.2)

First, by means of repeated applications of the product rule and chain rule it can be
shown that for any u, v ∈ R,

∂2

∂ρ2
Φ2 (u, v; ρ) =

∂

∂ρ
ϕ2 (u, v; ρ) =

ϕ2 (u, v; ρ)

(1− ρ2)2

(
(1− ρ2)(ρ+ uv)− ρ

(
u2 − 2ρuv + v2

))
,

as well as

∂2

∂u2
Φ2 (u, v; ρ) = ϕ′

1(u)Φ1

(
v − ρu√
1− ρ2

)
− ρ√

1− ρ2
ϕ1 (u)ϕ1

(
v − ρu√
1− ρ2

)
,

where
ϕ′
1(u) = − u√

2π
exp

(
−u2/2

)
,

which follows immediately by the chain rule.
Next, for the second order cross-derivatives, it can be shown that

∂2

∂u∂ρ
Φ2 (u, v; ρ) = ϕ1 (u)ϕ1

(
v − ρu√
1− ρ2

)
ρv − u

(1− ρ2)3/2

31



and
∂2

∂u∂v
Φ2 (u, v; ρ) = ϕ1 (u)ϕ1

(
v − ρu√
1− ρ2

)
1√

1− ρ2
,

both by applications of the chain rule and product rule.
It now follows by (A.2) combined with these second order cross-derivatives that

∂2pxy(θ)

∂ak∂ρ
=



∂2

∂ax∂ρ
Φ2 (ax, by; ρ)−

∂2

∂ax∂ρ
Φ2 (ax, by−1; ρ) if k = x,

− ∂2

∂ax−1∂ρ
Φ2 (ax−1, by; ρ) +

∂2

∂ax−1∂ρ
Φ2 (ax−1, by−1; ρ) if k = x− 1,

0 otherwise,

and

∂2pxy(θ)

∂ak∂bl
=



∂2

∂ak∂bl
Φ2 (ax, by; ρ) if (k, l) ∈

{
(x, y), (x− 1, y − 1)

}
,

− ∂2

∂ak∂bl
Φ2 (ax, by; ρ) if (k, l) ∈

{
(x− 1, y), (x, y − 1)

}
,

0 otherwise,

and

∂2pxy(θ)

∂ak∂al
=


∂2pxy(θ)

∂ak2
if k = l,

0 otherwise,

and

∂2pxy(θ)

∂ak2
=



∂2

∂ax2
Φ2 (ax, by; ρ)−

∂2

∂ax2
Φ2 (ax, by−1; ρ) if k = x,

− ∂2

∂ax−1
2
Φ2 (ax−1, by; ρ) +

∂2

∂ax−1
2
Φ2 (ax−1, by−1; ρ) if k = x− 1,

0 otherwise,

and, finally,

∂2pxy(θ)

∂ρ2
=

∂2

∂ρ2
Φ2 (ax, by; ρ)−

∂2

∂ρ2
Φ2 (ax−1, by; ρ)−

∂2

∂ρ2
Φ2 (ax, by−1; ρ) +

∂2

∂ρ2
Φ2 (ax−1, by−1; ρ) .
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Adjective marker pairs
Construct Number Positive (P) Negative (N)

Extroversion (E)

1 extraverted introverted
2 energetic unenergetic
3 talkative silent
4 bold timid
5 assertive unassertive
6 adventurous unadventurous

Conscientiousness (C)

1 organized disorganized
2 responsible irresponsible
3 conscientious negligent
4 practical impractical
5 thorough careless
6 hardworking lazy

Neuroticism (N)

1 calm angry
2 relaxed tense
3 at ease nervous
4 not envious envious
5 stable unstable
6 contented discontented

Table B.1: Unipolar markers of three Big-5 personality traits (Goldberg, 1992). Each trait is
measured by six pairs of items, where each item is a single English adjective. Each item pair
consists of a positive and negative item. We explain item identifiers by means of the following
example. Item “C3 P” refers to the positive (P) item in the 3rd pair of the conscientiousness (C)
scale, that is, adjective “conscientious”, whereas “N1 N” would refer to “angry”.

B Empirical application: Additional results

This appendix contains additional results of the empirical application from Section 5. Ta-
ble B.1 lists the unipolar markers of the three Big-5 scales used by Arias et al. (2020), namely
extroversion, conscientiousness, and neuroticism. Tables B.2–B.4 contain the (polychoric)
correlation matrices of the items in each scale, estimated by maximum likelihood and our
robust estimator, while Figures B.1–B.3 visualize the absolute difference between the two
estimators for each pairwise correlation. Table B.5 contains the cellwise Pearson residu-
als, empirical frequencies, as well as estimated model probabilities for the “envious”–“not
envious” item pair in the neuroticism scale.
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N1 P N1 N N2 P N2 N N3 P N3 N N4 P N4 N N5 P N5 N N6 P N6 N
N1 P 1.00 -0.37 0.71 -0.50 0.69 -0.49 0.27 -0.24 0.58 -0.47 0.42 -0.32
N1 N -0.37 1.00 -0.40 0.55 -0.39 0.47 -0.19 0.40 -0.39 0.60 -0.32 0.56
N2 P 0.71 -0.40 1.00 -0.55 0.75 -0.54 0.26 -0.26 0.55 -0.41 0.53 -0.47
N2 N -0.50 0.55 -0.55 1.00 -0.54 0.65 -0.24 0.42 -0.41 0.57 -0.31 0.52
N3 P 0.69 -0.39 0.75 -0.54 1.00 -0.53 0.29 -0.28 0.63 -0.44 0.52 -0.48
N3 N -0.49 0.47 -0.54 0.65 -0.53 1.00 -0.28 0.43 -0.44 0.58 -0.29 0.47
N4 P 0.27 -0.19 0.26 -0.24 0.29 -0.28 1.00 -0.61 0.26 -0.20 0.18 -0.20
N4 N -0.24 0.40 -0.26 0.42 -0.28 0.43 -0.61 1.00 -0.33 0.46 -0.22 0.44
N5 P 0.58 -0.39 0.55 -0.41 0.63 -0.44 0.26 -0.33 1.00 -0.69 0.53 -0.46
N5 N -0.47 0.60 -0.41 0.57 -0.44 0.58 -0.20 0.46 -0.69 1.00 -0.35 0.57
N6 P 0.42 -0.32 0.53 -0.31 0.52 -0.29 0.18 -0.22 0.53 -0.35 1.00 -0.58
N6 N -0.32 0.56 -0.47 0.52 -0.48 0.47 -0.20 0.44 -0.46 0.57 -0.58 1.00

(a) Maximum likelihood estimates

N1 P N1 N N2 P N2 N N3 P N3 N N4 P N4 N N5 P N5 N N6 P N6 N
N1 P 1.00 -0.47 0.80 -0.58 0.79 -0.56 0.30 -0.26 0.63 -0.54 0.49 -0.39
N1 N -0.47 1.00 -0.48 0.58 -0.49 0.54 -0.26 0.45 -0.47 0.68 -0.43 0.63
N2 P 0.80 -0.48 1.00 -0.66 0.85 -0.60 0.32 -0.32 0.64 -0.50 0.60 -0.56
N2 N -0.58 0.58 -0.66 1.00 -0.70 0.76 -0.37 0.49 -0.48 0.60 -0.35 0.55
N3 P 0.79 -0.49 0.85 -0.70 1.00 -0.62 0.35 -0.39 0.66 -0.52 0.59 -0.57
N3 N -0.56 0.54 -0.60 0.76 -0.62 1.00 -0.42 0.49 -0.52 0.58 -0.37 0.53
N4 P 0.30 -0.26 0.32 -0.37 0.35 -0.42 1.00 -0.92 0.35 -0.30 0.30 -0.33
N4 N -0.26 0.45 -0.32 0.49 -0.39 0.49 -0.92 1.00 -0.39 0.50 -0.33 0.53
N5 P 0.63 -0.47 0.64 -0.48 0.66 -0.52 0.35 -0.39 1.00 -0.82 0.59 -0.55
N5 N -0.54 0.68 -0.50 0.60 -0.52 0.58 -0.30 0.50 -0.82 1.00 -0.44 0.61
N6 P 0.49 -0.43 0.60 -0.35 0.59 -0.37 0.30 -0.33 0.59 -0.44 1.00 -0.75
N6 N -0.39 0.63 -0.56 0.55 -0.57 0.53 -0.33 0.53 -0.55 0.61 -0.75 1.00

(b) Robust estimates

Table B.2: Estimated correlation matrices of the items in the neuroticism scale from the data
in Arias et al. (2020, Sample 1; N = 725) using MLE (top panel) and our robust estimator with
tuning constant c = 1.6 (bottom panel). The items are “calm” (N1 P), “angry” (N1 N), “relaxed”
(N2 P), “tense” (N2 N), “at ease” (N3 P), “nervous” (N3 N), “not envious” (N4 P), “envious”
(N4 N), “stable” (N5 P), “unstable” (N5 N), “contented” (N6 P), and “discontented” (N6 N).
For the item naming given in parentheses, items with identical identifier (the integer after the
first “N”) are polar opposites, where a last character “P” refers to the positive opposite and “N”
to the negative opposite.
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E1 P E1 N E2 P E2 N E3 P E3 N E4 P E4 N E5 P E5 N E6 P E6 N
E1 P 1.00 -0.77 0.50 -0.26 0.70 -0.50 0.56 -0.42 0.51 -0.40 0.51 -0.32
E1 N -0.77 1.00 -0.38 0.34 -0.59 0.61 -0.45 0.54 -0.47 0.50 -0.35 0.37
E2 P 0.50 -0.38 1.00 -0.65 0.43 -0.27 0.49 -0.28 0.47 -0.38 0.54 -0.39
E2 N -0.26 0.34 -0.65 1.00 -0.24 0.34 -0.30 0.40 -0.32 0.48 -0.38 0.49
E3 P 0.70 -0.59 0.43 -0.24 1.00 -0.59 0.44 -0.36 0.46 -0.40 0.41 -0.25
E3 N -0.50 0.61 -0.27 0.34 -0.59 1.00 -0.27 0.56 -0.35 0.45 -0.24 0.37
E4 P 0.56 -0.45 0.49 -0.30 0.44 -0.27 1.00 -0.41 0.64 -0.49 0.54 -0.34
E4 N -0.42 0.54 -0.28 0.40 -0.36 0.56 -0.41 1.00 -0.49 0.60 -0.27 0.40
E5 P 0.51 -0.47 0.47 -0.32 0.46 -0.35 0.64 -0.49 1.00 -0.71 0.39 -0.23
E5 N -0.40 0.50 -0.38 0.48 -0.40 0.45 -0.49 0.60 -0.71 1.00 -0.34 0.45
E6 P 0.51 -0.35 0.54 -0.38 0.41 -0.24 0.54 -0.27 0.39 -0.34 1.00 -0.68
E6 N -0.32 0.37 -0.39 0.49 -0.25 0.37 -0.34 0.40 -0.23 0.45 -0.68 1.00

(a) Maximum likelihood estimates

E1 P E1 N E2 P E2 N E3 P E3 N E4 P E4 N E5 P E5 N E6 P E6 N
E1 P 1.00 -0.87 0.55 -0.34 0.75 -0.62 0.58 -0.58 0.54 -0.45 0.55 -0.39
E1 N -0.87 1.00 -0.40 0.36 -0.67 0.63 -0.52 0.62 -0.52 0.51 -0.36 0.37
E2 P 0.55 -0.40 1.00 -0.84 0.50 -0.32 0.56 -0.38 0.55 -0.43 0.57 -0.44
E2 N -0.34 0.36 -0.84 1.00 -0.30 0.35 -0.40 0.43 -0.41 0.54 -0.45 0.53
E3 P 0.75 -0.67 0.50 -0.30 1.00 -0.71 0.50 -0.51 0.52 -0.50 0.42 -0.28
E3 N -0.62 0.63 -0.32 0.35 -0.71 1.00 -0.38 0.62 -0.47 0.47 -0.30 0.37
E4 P 0.58 -0.52 0.56 -0.40 0.50 -0.38 1.00 -0.55 0.73 -0.64 0.61 -0.48
E4 N -0.58 0.62 -0.38 0.43 -0.51 0.62 -0.55 1.00 -0.61 0.66 -0.33 0.44
E5 P 0.54 -0.52 0.55 -0.41 0.52 -0.47 0.73 -0.61 1.00 -0.85 0.44 -0.29
E5 N -0.45 0.51 -0.43 0.54 -0.50 0.47 -0.64 0.66 -0.85 1.00 -0.41 0.47
E6 P 0.55 -0.36 0.57 -0.45 0.42 -0.30 0.61 -0.33 0.44 -0.41 1.00 -0.83
E6 N -0.39 0.37 -0.44 0.53 -0.28 0.37 -0.48 0.44 -0.29 0.47 -0.83 1.00

(b) Robust estimates

Table B.3: Estimated correlation matrices of the items in the extroversion scale from the data in
Arias et al. (2020, Sample 1; N = 725) using MLE (top panel) and our robust estimator with tuning
constant c = 1.6 (bottom panel). The items are “extraverted” (E1 P), “introverted” (E1 N), “ener-
getic” (E2 P), “unenergetic” (E2 N), “talkative” (E3 P), “silent” (E3 N), “bold” (E4 P), “timid”
(E4 N), “assertive” (E5 P), “unassertive” (E5 N), “adventurous” (E6 P), and “unadventurous”
(E6 N). For the item naming given in parentheses, items with identical identifier (the integer after
the first “N”) are polar opposites, where a last character “P” refers to the positive opposite and “N”
to the negative opposite.
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C1 P C1 N C2 P C2 N C3 P C3 N C4 P C4 N C5 P C5 N C6 P C6 N
C1 P 1.00 -0.76 0.56 -0.42 0.34 -0.35 0.37 -0.26 0.51 -0.40 0.43 -0.43
C1 N -0.76 1.00 -0.51 0.58 -0.24 0.55 -0.32 0.44 -0.43 0.61 -0.44 0.55
C2 P 0.56 -0.51 1.00 -0.69 0.42 -0.55 0.57 -0.42 0.51 -0.54 0.65 -0.55
C2 N -0.42 0.58 -0.69 1.00 -0.39 0.75 -0.48 0.67 -0.42 0.70 -0.53 0.63
C3 P 0.34 -0.24 0.42 -0.39 1.00 -0.32 0.39 -0.34 0.44 -0.33 0.38 -0.25
C3 N -0.35 0.55 -0.55 0.75 -0.32 1.00 -0.37 0.59 -0.38 0.71 -0.44 0.53
C4 P 0.37 -0.32 0.57 -0.48 0.39 -0.37 1.00 -0.51 0.36 -0.38 0.39 -0.31
C4 N -0.26 0.44 -0.42 0.67 -0.34 0.59 -0.51 1.00 -0.38 0.59 -0.31 0.43
C5 P 0.51 -0.43 0.51 -0.42 0.44 -0.38 0.36 -0.38 1.00 -0.43 0.54 -0.39
C5 N -0.40 0.61 -0.54 0.70 -0.33 0.71 -0.38 0.59 -0.43 1.00 -0.43 0.53
C6 P 0.43 -0.44 0.65 -0.53 0.38 -0.44 0.39 -0.31 0.54 -0.43 1.00 -0.61
C6 N -0.43 0.55 -0.55 0.63 -0.25 0.53 -0.31 0.43 -0.39 0.53 -0.61 1.00

(a) Maximum likelihood estimates

C1 P C1 N C2 P C2 N C3 P C3 N C4 P C4 N C5 P C5 N C6 P C6 N
C1 P 1.00 -0.89 0.57 -0.56 0.36 -0.46 0.43 -0.35 0.54 -0.56 0.49 -0.52
C1 N -0.89 1.00 -0.58 0.64 -0.31 0.60 -0.38 0.47 -0.48 0.69 -0.52 0.61
C2 P 0.57 -0.58 1.00 -0.86 0.45 -0.68 0.62 -0.54 0.55 -0.65 0.69 -0.64
C2 N -0.56 0.64 -0.86 1.00 -0.44 0.80 -0.57 0.74 -0.50 0.76 -0.61 0.66
C3 P 0.36 -0.31 0.45 -0.44 1.00 -0.43 0.42 -0.46 0.17 -0.41 0.40 -0.26
C3 N -0.46 0.60 -0.68 0.80 -0.43 1.00 -0.48 0.70 -0.52 0.78 -0.55 0.59
C4 P 0.43 -0.38 0.62 -0.57 0.42 -0.48 1.00 -0.68 0.39 -0.47 0.44 -0.33
C4 N -0.35 0.47 -0.54 0.74 -0.46 0.70 -0.68 1.00 -0.47 0.66 -0.42 0.45
C5 P 0.54 -0.48 0.55 -0.50 0.17 -0.52 0.39 -0.47 1.00 -0.54 0.60 -0.45
C5 N -0.56 0.69 -0.65 0.76 -0.41 0.78 -0.47 0.66 -0.54 1.00 -0.59 0.61
C6 P 0.49 -0.52 0.69 -0.61 0.40 -0.55 0.44 -0.42 0.60 -0.59 1.00 -0.69
C6 N -0.52 0.61 -0.64 0.66 -0.26 0.59 -0.33 0.45 -0.45 0.61 -0.69 1.00

(b) Robust estimates

Table B.4: Estimated correlation matrices of the items in the conscientiousness scale from the
data in Arias et al. (2020, Sample 1; N = 725) using MLE (top panel) and our robust estimator
with tuning constant c = 1.6 (bottom panel). The items are “calm” (C1 P), “angry” (C1 N),
“relaxed” (C2 P), “tense” (C2 N), “at ease” (C3 P), “nervous” (C3 N), “not envious” (C4 P),
“envious” (C4 N), “stable” (C5 P), “unstable” (C5 N), “contented” (C6 P), and “discontented”
(C6 N). For the item naming given in parentheses, items with identical identifier (the integer after
the first “N”) are polar opposites, where a last character “P” refers to the positive opposite and “N”
to the negative opposite.
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Figure B.1: Difference between absolute estimates for the polychoric correlation coefficient of our
robust estimator and the MLE for each item pair in the neuroticism scale, using the data of Arias
et al. (2020). The items are “calm” (N1 P), “angry” (N1 N), “relaxed” (N2 P), “tense” (N2 N),
“at ease” (N3 P), “nervous” (N3 N), “not envious” (N4 P), “envious” (N4 N), “stable” (N5 P),
“unstable” (N5 N), “contented” (N6 P), and “discontented” (N6 N). For the item naming given
in parentheses, items with identical identifier (the integer after the first “N”) are polar opposites,
where a last character “P” refers to the positive opposite and “N” to the negative opposite.
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Figure B.2: Difference between absolute estimates for the polychoric correlation coefficient of
our robust estimator and the MLE for each item pair in the extroversion scale, using the data
of Arias et al. (2020). The items are “extraverted” (E1 P), “introverted” (E1 N), “energetic”
(E2 P), “unenergetic” (E2 N), “talkative” (E3 P), “silent” (E3 N), “bold” (E4 P), “timid” (E4 N),
“assertive” (E5 P), “unassertive” (E5 N), “adventurous” (E6 P), and “unadventurous” (E6 N). For
the item naming given in parentheses, items with identical identifier (the integer after the first “N”)
are polar opposites, where a last character “P” refers to the positive opposite and “N” to the
negative opposite.
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Figure B.3: Difference between absolute estimates for the polychoric correlation coefficient of
our robust estimator and the MLE for each item pair in the conscientiousness scale, using the
data of Arias et al. (2020). The items are “calm” (C1 P), “angry” (C1 N), “relaxed” (C2 P),
“tense” (C2 N), “at ease” (C3 P), “nervous” (C3 N), “not envious” (C4 P), “envious” (C4 N),
“stable” (C5 P), “unstable” (C5 N), “contented” (C6 P), and “discontented” (C6 N). For the item
naming given in parentheses, items with identical identifier (the integer after the first “N”) are
polar opposites, where a last character “P” refers to the positive opposite and “N” to the negative
opposite.
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X\Y 1 2 3 4 5
1 9,814,457,557.73 16,011.33 11.82 1.14 0.65
2 2,424.07 10.07 0.80 0.90 1.42
3 15.48 0.65 0.99 0.80 77.14
4 0.88 0.92 0.61 12.66 222,528.08
5 0.89 0.88 36.01 55,420.33 995,017,243,197.60

(a) Pearson residuals f̂N (x, y)
/
pxy(θ̂N )

X\Y 1 2 3 4 5
1 0.019 0.007 0.003 0.028 0.022
2 0.007 0.040 0.050 0.138 0.014
3 0.006 0.047 0.143 0.030 0.003
4 0.054 0.189 0.029 0.019 0.007
5 0.108 0.018 0.006 0.008 0.007

(b) Empirical relative frequencies f̂N (x, y)

X\Y 1 2 3 4 5
1 < 0.001 < 0.001 < 0.001 0.024 0.034
2 < 0.001 0.004 0.062 0.153 0.010
3 0.001 0.072 0.145 0.038 < 0.001
4 0.061 0.205 0.047 0.002 < 0.001
5 0.120 0.020 < 0.001 < 0.001 < 0.001

(c) Estimated cell probabilities pxy(θ̂N )

Table B.5: Pearson residual (top), empirical relative frequency (center), and estimated cell proba-
bility (bottom) of each cell for the “not envious” (X)–“envious” (Y ) item pair in the measurements
of Arias et al. (2020) of the neuroticism scale. Estimate θ̂N was computed with tuning con-
stant c = 1.6.
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