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Discussion

Who of you works frequently with survey data?
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Discussion

Do you think that survey-takers always respond
accurately and truthfully?
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Motivation
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Motivation

• Surveys are ubiquitous in empirical research

• There can be systematic biases in survey responses
−→ Overconfidence, social desirability, inattention. . .

• Also survey design can affect response accuracy
−→ Item order and framing, . . .

−→ Survey bias

−→ We focus on one type of survey bias: insufficient effort responding
(also called careless responding)
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Insufficient effort responding (IER)

Definition: Insufficient Effort Responding (Huang et al., 2012)
A response set in which the respondent answers a survey measure with
low or little motivation to comply with survey instructions, correctly
interpret item content, and provide accurate responses.

• IER can be . . .
• intentional (e.g., disregard of item content)
• but also unintentional (e.g., misinterpretation; Ward and Pond, 2015)
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Insufficient effort responding (IER)

Identifying careless respondents is important:

• Threat to internal validity (e.g. Huang et al., 2015)

• Interesting for theory building (e.g. DeSimone et al., 2020)

• Helps identify flaws in the survey design

−→ Big concern particularly in online surveys (e.g. Chandler et al., 2019)
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IER example: Random responding

Random responding: Tendency to randomly choose answer categories,
regardless of item content

Strongly
Disagree Disagree Neutral Agree Strongly

Agree

SIPS 2022 is awesome. � � � � �

I like chocolate. � � � � �

Oxygen is important. � � � � �

I am paid biweekly by
leprechauns. � � � � �

Not getting bitten by a
shark would be fun. � � � � �
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IER example: Straightlining

Straightlining: Tendency to consistently choose the same answer
category, regardless of item content

Strongly
Disagree Disagree Neutral Agree Strongly

Agree

SIPS 2022 is awesome. � � � � �

I like chocolate. � � � � �

Oxygen is important. � � � � �

I am paid biweekly by
leprechauns. � � � � �

Not getting bitten by a
shark would be fun. � � � � �
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IER example: Pattern responding

Pattern responding: Tendency to respond according to certain pattern(s)

Strongly
Disagree Disagree Neutral Agree Strongly

Agree

SIPS 2022 is awesome. � � � � �

I like chocolate. � � � � �

Oxygen is important. � � � � �

I am paid biweekly by
leprechauns. � � � � �

Not getting bitten by a
shark would be fun. � � � � �
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Prevalence of IER

No consensus on prevalence of IER in literature:
• Estimates range from 3.5% (Johnson, 2005) to 35%–46%
(Oppenheimer et al., 2009) of all respondents
• Variation caused by heterogeneity in surveys and how IER is
measured

−→ Already ≤ 10% can jeopardize statistical analysis (Arias et al., 2020)
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Common IER detection methods

• Infrequency items (also called bogus items): Add items such as
“I am paid biweekly by leprechauns” (Meade and Craig, 2012)

• Page time index (Huang et al., 2012): For each page, assign 1 if the
response times were faster than 2 second per item and 0 otherwise.
Then average over the pages.

• Long string index (Johnson, 2005): Length of the longest string of
consecutive identical responses

• Mahalanobis distance: Computed with the sample mean and sample
covariance matrix

−→ See Bowling et al. (2021b) for a more complete overview
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Discussion

Have you ever screened your survey data for the presence
of careless responding?
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Discussion

What would you do with the responses of careless
respondents?
(Assuming you know for a fact that they have been careless)
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Problem description

−→ Existing methods for detecting careless respondents assume that
they are careless throughout the survey (rowwise outliers)

−→ Recent literature: carelessness is often restricted to subsets of items
• In long surveys, a large proportion of respondents may become

careless towards the end due to fatigue (Bowling et al., 2021a)
• Related to behavioral economics: limited attention (e.g., Gabaix,

2019)

−→ New methods are required to detect periods of carelessness
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Problem description

Identify when a given respondent is careless (if at all)
instead of who is careless throughout the survey!
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Discussion

Do you think that detecting periods of careless
responding is a feasible goal? Can you think of any risks
in attempting to do so?
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Auto-associative neural networks (autoencoders)
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Setup

• Ordinal survey responses of n respondents to p items are collected in
an n × p data matrix X , with possibly n < p

• The observations (respondents) are assumed to be i.i.d.

• We don’t know when and where (if at all) IER occurs in X
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Assumptions and main idea

Assumptions 1 and 2

1 The responses in X admit a low-dimensional representation, S, of
dimension q � p. The value of q is known.

2 The survey that generated X is reliable in the sense that if there was
no IER, X would accurately measure all constructs.

−→ In the behavioral sciences, the number of constructs a survey
measures is typically known

Idea: Reconstruct X from its low-dimensional representation S. Poor or
near-perfect reconstruction might indicate IER (more on this later).
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Auto-associative neural network (autoencoder)

Autoencoder (Kramer, 1992) to estimate S from X :
• Neural network with odd depth that attempts to reconstruct its input
• Central hidden layer is crucial: compresses the input to dimension q
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Auto-associative neural network (autoencoder)

Network architecture:

• q nodes in bottleneck layer
• 1.5× p nodes in (de)mapping layers
• Activation functions:
−→ hyperbolic tangent in (de)mapping layers
−→ linear in bottleneck layer

• Run 100 epochs
• Use robust pseudo-Huber loss
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Autoencoder: Regularization

We incorporate information on page-membership of items:

−→ IER behavior can be expected to be similar within each page, but
may differ between pages

−→ Use group-lasso regularization (cf. Scardapane et al., 2017)
• Each group Gj holds items on the same survey page
• Regularization is applied between input layer and mapping layer

−→ For instance, items from later pages (where IER can be expected to
be higher) may be routed through different nodes in the mapping
layer than items from earlier pages
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Autoencoder: Regularization

For m pages and a parameter vector θ, the group-lasso penalty is

Ω(θ) =
m∑

j=1

√
|Gj |

∑
k∈Gj
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Autoencoder: Reconstruction error

Let X̂ij be the reconstruction of response Xij , i = 1, . . . , n; j = 1, . . . , p

−→ The associated IER score is the reconstruction error

IERij =
(

Xij − X̂ij
Lj

)2

with Lj denoting the number of answer categories of item j
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Discussion

Do you think that trying to reconstruct responses is an
intuitively sensible way to detect careless responding?
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Response times
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Response times

Response times can be a good indicator of IER (Bowling et al., 2021b). . .
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Figure: Response times of a respondent who was instructed to respond
accurately and truthfully to each item in a study of Schroeders et al. (2022)
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Response times

. . . but sometimes they are not!
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Figure: Response times of a respondent who was instructed to perform IER
throughout a study of Schroeders et al. (2022)
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Combining IER scores with response times

Idea: Combine the autoencoder’s IER scores with
response times. Are there joint change points?
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Combining IER scores with response times
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Combining IER scores with response times
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Combining IER scores with response times
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Discussion

Can you think of any risks when using per-item response
times for detection of careless responding?
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Change point detection
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Change point detection

Assumption 3
In periods in which a respondent engages in IER, there is a change point
in either the IER scores or the response times, or both.

−→ The IER scores and response times support or complement each
other in identifying IER periods

−→ Combine both quantities in a two-dimensional item series of length
p and apply a multivariate method for change point detection
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Self-normalization test for change points (SNCP)

Developed by Zhao et al. (2021): details

• Loops recursively over many nested segmentations of a series
• For each segmentation, calculate some test statistic
• If test statistic exceeds some threshold, there is a change point

−→ Recursively narrow segment to isolate location of a change point

−→ Allows for change point detection in a broad class of parameters
−→ Asymptotic theory:

• Identifies almost surely the correct change points
• Offers size control through the choice of the threshold
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Self-normalization test for change points (SNCP)

−→ We can apply SNCP to . . .
• IER scores and response times
• IER scores only
• Response times only

−→ We use . . .
• Mean as parameter for change point detection

(should have used median)
• Size α = 0.025
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Simulation study

40 / 58



Setup

Generation of 100 uncontaminated datasets:

• Generate n = 500 rating-scale observations
• 15 constructs with 20 items each ( =⇒ q = 15, p = 300)
• Constructs are mutually independent and items within the same
construct have correlation of ±0.7
• All items use the following answer probabilities:

P[Xj = 1] P[Xj = 2] P[Xj = 3] P[Xj = 4] P[Xj = 5]
0.05 0.25 0.40 0.25 0.05

• Items are in random order

−→ Inspired by the NEO PI-R (Costa and McCrae, 1992)
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Setup: IER onset

−→ Sample IER onset from a Weibull distribution details

−→ 80% probability that IER starts before having answered 90% of all items
(based on estimates in Bowling et al., 2021a)
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Setup: Response times

−→ Sample response times from Weibull distributions details

−→ Emulates empirical response times in Schroeders et al. (2022), also
inspired by Bowling et al. (2021b)
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Setup: Adding IER

• Vary the prevalence of IER: {0%, 20%, . . . , 100%}

• Four types of IER: Random responding, straightlining, imperfect
straightlining, pattern responding

• Each respondent who starts IER gets randomly assigned one of the
four IER types

−→ Each type is present in each contaminated dataset
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Setup: Types of IER

• Random responding: Respond completely at random

• Straightlining: Respond always to the same, randomly determined
answer category

• Imperfect straightlining: Straightlining, but with random variation of
up to ±1 answer category

• Pattern responding (based on Schroeders et al., 2022): Respond
according to a fixed, randomly determined pattern
−→ For example, 1-2-3-1-2-3, 4-5-4-5, . . .
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Results: 40% IER prevalence
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Results: 40% IER prevalence
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Results: 40% IER prevalence

100

200

300

400

500

100 200 300
Question Index

R
es

po
nd

en
t I

nd
ex

0.0
0.1
0.2
0.3
0.4

Flagged

46 / 58



Evaluation measure

Adjusted Rand Index (ARI; Hubert and Arabie, 1985):

• ARI is a measure of classification performance

• Bounded between 0 (random classification) and 1
(perfect classification)

−→ For each item, a simulated respondent is either IER or not

−→ Calculate ARI of each respondent’s series of per-item responses

−→ Average the ARI over respondents
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Results: ARI
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Results: ARI more

regular IER
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Results: ARI

random straight straight (imp.) pattern
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Conclusions and outlook
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Conclusions and outlook

−→ Proposed methodology seems promising for detecting periods of IER

−→ Next steps:
• Tweaks in methodology: e.g., add third dimension based on

longstring index to change point detection
• Lots of simulations
• Design a survey and collect emprical data

−→ Robust methods for rating-scale data are underdeveloped

−→ Potential for novel research ideas!
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Discussion

What do you think about our method?
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Discussion

Let’s have a discussion on the potential of machine
learning in psychology!
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Discussion

Have you ever heard the term “Differential Privacy”?
(This is unrelated to careless responding)
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Example: Rating-scale data back
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Example: Random responding back
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Example: Straightlining back
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Self-normalization test for change points back

Estimation of multiple change points based on self-normalization (SNCP;
Zhao et al., 2021)

• Let {Y t}pt=1 be a piecewise stationary series of dimension d
• Series has mo ≥ 0 (unknown) change points that partition it into

mo + 1 segments
• Each segment is piecewise stationary and obeys CDFs

F (i), i = 1, . . . ,mo + 1

• CDFs are characterized by functionals θi = θ
(
F (i)

)
∈ Rd

−→ Breaks in {Y t}pt=1 are characterized by breaks in θ

−→ Goal: Estimate number of change points, mo, and their locations
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Self-normalization test for change points back

For 1 ≤ a < b ≤ p, put θ̂a,b = θ
(
F̂a,b

)
, where F̂a,b is the empirical CDF

of {Y t}bt=a. For a vector v , denote its outer product by v⊗2 = vv>.

For k ∈ N such that 1 ≤ t1 < k < t2 ≤ p:

Tp(t1, k, t2) = Dp(t1, k, t2)>V p(t1, k, t2)−1Dp(t1, k, t2)

Dp(t1, k, t2) = (k − t1 + 1)(t2 − k)
(t2 − t1 + 1)3/2

(
θ̂t1,k − θ̂k+1,t2

)
V p(t1, k, t2) = Lp(t1, k, t2) + Rp(t1, k, t2)

Lp(t1, k, t2) =
k∑

i=t1

(i − t1 + 1)2(k − i)2
(t2 − t1 + 1)2(k − t1 + 1)2

(
θ̂t1,i − θ̂i+1,k

)⊗2
Rp(t1, k, t2) =

t2∑
i=k+1

(t2 − i + 1)2(i − 1− k)2
(t2 − t1 + 1)2(t2 − k)2

(
θ̂i ,t2 − θ̂k+1,i−1

)⊗2
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Self-normalization test for change points back

We calculate the test statistic Tp(t1, k, t2) based on a collection of
nested windows covering k. Specifically, for ε ∈ (0, 0.5), define window
size h = bεpc. For each k = h, h + 1, . . . , p − h, define its corresponding
nested window set H1:p(k) by

H1:p(k) =
{

(t1, t2)
∣∣∣∣∣t1 = k − j1h + 1, j1 = 1, . . . , bk/hc;

t2 = k + j2h, j2 = 1, . . . , b(p − k)/hc
}
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Self-normalization test for change points back

For k ∈ {1, . . . , p} and 1 ≤ s < e ≤ p, denote

Ws,e = {(t1, t2)|s ≤ t1 < t2 ≤ e}

and
Hs:e(k) = H1:p(k) ∩Ws,e

and the subseries maximal test statistic by

Ts,e(k) = max
(t1,t2)∈Hs:e(k)

Tp(t1, k, t2)

−→ Algorithm 1 (next slide) uses these test statistics to estimate the
number of change points, m̂, and their locations in {1, . . . , p}
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Self-normalization test for change points back

Algorithm 1: SNCP for multiple change point detection

Input: Time series {Y t}pt=1, threshold Kp, window size h = bpεc.
Output: Estimated change-points set k̂ = (k̂1, . . . , k̂m̂)
Procedure: SNCP(s, e,Kp, h), for 1 ≤ s < e ≤ p
Initialization: SNCP(1, p,Kp, h)

1 if e − s + 1 < 2h then
2 Stop
3 else
4 k̂∗ = arg maxk=s,...,e Ts,e(k);
5 if Ts,e(k̂∗) ≤ Kp then
6 Stop
7 else
8 k̂ = k̂ ∪ k̂∗;
9 SNCP(s, k̂∗,Kp, h);
10 SNCP(k̂∗ + 1, e,Kp, h);
11 end
12 end
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Self-normalization test for change points back

Algorithm 1 . . .
• runs in O(p/ε2) time
• identifies almost surely the correct number of change points and
their correct locations, as p →∞

Under the null hypothesis of no change points, the SNCP test statistic
maxk=1,...,p T1,p(k) converges in distribution to a limit distribution Gε,d
−→ Offers (asymptotic) size control
−→ For fixed ε, d , and α ∈ (0, 0.5), choose threshold Kp in Algorithm 1

as the (1− α)-th quantile of Gε,d
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Generating correlated ordinal variables

Sampling scheme of Goldfeld and Wujciak-Jens (2020):

• Goal: Sample independent Xj ∈ {1, . . . ,K}, for j = 1, . . . , p, that
jointly follow a positive semidefinite covariance matrix Σ

−→ Ordinal variables with finite support (K answer categories)

• Specify probabilities of choosing k-th answer category as

Pj,k = P[Xj = k],

where
∑K

k=1 Pj,k = 1, for j = 1, . . . , p

−→ Implies distribution Xj ∼ Fj , where, for x ∈ R,

Fj(x) =
K∑

k=1
1{k ≤ x}Pj,k

11 / 17



Generating correlated ordinal variables

• For Flogistic the standard logistic CDF, put, for k = 1, . . . ,K ,

Tj,k = F−1logistic
(
Fj(k)

)
,

with conventions F−1logistic(0) = −∞ and F−1logistic(1) = +∞

• Sample (Y1, . . . ,Yp)> ∼ Np(0,Σ), then calculate probabilities
Uj = Φ(Yj) and quantiles Zj = F−1logistic

(
Uj
)
, for j = 1, . . . , p

• Finally, obtain the desired ordinal variables Xj as

Xj = 1 +
K∑

k=1
1{Zj > Tj,k}

=⇒ Xj ∈ {1, . . . ,K} and Var[X1, . . . ,Xp] ≈ Σ
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Simulation setup: IER onset back

• Sample the item index at which IER onsets as i.i.d. draws from a
Weibull distribution with location 240 (80% of all items), shape 2.2,
and scale 20

−→ Inspired by Bowling et al., 2021a
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Simulation setup: Response times back

• Regular: Sample per-item response times (in seconds) as i.i.d. draws
from a Weibull distribution with scale 6 and shape 2
−→ Mean ≈ 5.3 and variance ≈ 2.8
−→ Emulates empirical observations in Schroeders et al. (2022)

• IER: Sample per-item response times (in seconds) as i.i.d. draws
from a Weibull distribution with scale 2 and shape 1
−→ Mean and variance of 2
−→ Inspired by Bowling et al. (2021b)
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Simulation study: Size control

Results with size α = 0.01: back

regular IER
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Simulation study: Size control

Results with size α = 0.025: back

regular IER
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Simulation study: Size control

Results with size α = 0.05: back

regular IER
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