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Background

CITRUS =
Convergence for Individualizing TReatment Using

Statistical approaches

Project of the Econometric Institute and Erasmus Medical Center;

Part of the Convergence Alliance between EUR, EMC, TU Delft;

Fully funded by an Open Mind Call grant (08–12/2021).
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Introduction

Evidence-based medicine: the “conscientious, explicit and judicious use of
current best evidence in making decisions about the care of individual
patients” (Sackett et al., 1996).

➔ Identify heterogeneous treatment effects (HTE)!

➔ Methods from modern causal inference?

➔ CITRUS: Which methods are most eligible for medical data?

➔ Simulate common characteristics of medical data.
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Introduction

In a perfect world, we’d have. . .

Many observations: n → ∞;

Perfect information on relevant covariates (unconfoundedness);

I.I.D. data from randomized experiments;

Continuous data.

BUT: The world is not perfect (especially in medicine. . . )
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Introduction
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Introduction

In medical data, we typically have. . .

Very finite sample sizes (n ≥ 500 is rare);

Noisy to incomplete representation of relevant covariates;

Non-identically distributed samples;

Improper randomization (sometimes. . . );

Non-continuous data (e.g. categorical).

CITRUS research question:

To what extent does this affect the performance of each HTE
identification method?
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Setup

Let there be n independent observations (Xi ,Yi ,Wi ,Ti ).

Xi is p-dimensional covariate vector;

Yi is outcome variable. Binary mortality indicator here: Yi = 1 if i
dies.

Wi is binary treatment assignment variable: Wi = 1 if i is in
treatment group. Assume RCT, so P[Wi = 1] = 0.5.

Ti is right-censored time at risk.
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Setup

Rubin causal model: The DGP can generally be viewed as

πi (W ) = Flogistic

(
θ(Xi )W + ν(Xi ) + εi

)
= P[Yi (W ) = 1|W ,Xi ],

Yi (W ) ∼ Binomial
(
πi (W )

)
,

Ti (W ) = g
(
Xi ,Yi (W )

)
.

Yi (W ),Ti (W ) are the potential outcome and time at risk, resp.;

θ(Xi ) is the HTE function: causal effect of W on Yi ;

ν(Xi ) is the nuisance function: raw effect of Xi on Yi ;

εi is zero-mean noise term;

g : Rp × {0, 1} → [0,∞) is the survival function.
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Setup

Yi (W ) ∼ Binomial
(
πi (W )

)
, Ti (W ) = g

(
Xi ,Yi (W )

)
.

We only ever observe one of the potential outcomes/times at risk:

(Yi ,Ti ) =

{(
Yi (1),Ti (1)

)
if Wi = 1,(

Yi (0),Ti (0)
)

if Wi = 0.

Using (Xi ,Yi ,Wi ,Ti ), estimate the HTE

τi = πi (1)− πi (0),

that is, treatment-induced reduction of mortality probability.
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Quantities of interest

HTE parameters θi = θ(Xi ) and 95% coverage thereof;

HTE τi and 95% coverage thereof;

Within-group average treatment effect of group G ⊆ {1, . . . , n}:

ATEG = |G|−1
∑
i∈G

(
πi (1)− πi (0)

)
;

Within-group average relative treatment effect of G:

ARTEG = |G|−1
∑
i∈G

πi (1)
/
πi (0).
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Overview: Simulation Scenarios

We use simulation to emulate a medical DGP. We model. . .

Various sample sizes n ∈ {100, 250, 500, 1, 000, 10, 000};

Categorical representation of relevant covariates;

Undersampling of relevant subgroups;

Various degrees of nonlinearity and sparsity;

Anomalous individuals.
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Scenario 1: Categorical Representation

Let variable X ∗ be a major driver of treatment effect heterogeneity.
We don’t observe X ∗, but just a categorical version thereof, X .
Motivation: Cancer stage.

Figure: 5-year-survival probability by lung cancer stage; taken from Figure 6A in
Groome et al. (2007)
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Scenario 1: Categorical Representation

Let variable X ∗ be a major driver of treatment effect heterogeneity.

We don’t observe X ∗, but a categorical version thereof, X .

The important variable Stage in cancer data is categorical!

How to simulate this?

Generate continuous X ∗ measuring cancer severity;

Group X ∗ into groups based on its quantiles;

The group membership X (= Stage) is observed.

Procedure generalizes to non-cancer applications.

➔ Does categorical representation affect model’s performance?
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Scenario 2: Undersampling of Subgroups

Motivation: Females and non-Whites are often underrepresented in trials.

2010 US Census: 72% of Americans are White and 13%
African-American.

Case study: In the largest clinical trial on lung cancer screening:

90% of participants are White and 4.5% African-American.

59% are male, 41% female.

Source: The National Lung Screening Trial Research Team (2011).

Possible heterogeneity along ethnicity (Blom et al., 2020).

➔ Does undersampling affect model’s ability to capture heterogeneity?
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Scenario 2: Undersampling of Subgroups

Luckily, this issue has recently started to attract public attention:
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Scenario 3: Nonlinearity

Recall the potential mortality probabilities:

πi (W ) = P[Yi (W ) = 1|Wi ,Xi ] = Flogistic

(
θ(Xi )W + ν(Xi ) + εi

)
.

The HTE and nuisance functions (θ(·) and ν(·)) may be nonlinear.

We consider various degrees of nonlinearity:

E.g. quadratic, exponential, logarithmic, a mix thereof;

Nonlinear interactions of variables;

Baseline is linearity.

➔ Does degree of nonlinearity affect model’s performance?
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Scenario 4: Sparsity

The HTE function θ(Xi ) may effectively only depend on a subset of Xi .
➔ Not all variables affect treatment effectiveness.

Easiest example: Assume linearity in parameters, i.e.

θ(Xi ) = X⊤
i β = β1Xi ,1 + · · ·+ βpXi ,p,

where β ∈ Rp is fixed and sparse.

➔ Only variables with nonzero coefficient matter for HTE.
➔ Can the model identify these variables?
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Scenario 5: Anomalous Individuals

There may be individuals with extreme characteristics.

For example: extreme smokers (≥ 100 cigarettes/day!) or extremely
obese individuals.

Often, such individuals are at extreme mortality risk, regardless of
treatment assignment status.

➔ Can a few extreme individuals affect the model’s fit?
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Overview: Methods for Estimating HTE

Methods from medicine:

Rate ratios;

Predictive modeling: risk & effect models.

Methods from stats/metrics:

Double Machine Learning (Chernozhukov et al., 2018);

Generic Machine Learning (Chernozhukov et al., 2020);

Causal random forests (Athey et al., 2019).

There exist many more; e.g. survival-based models.

You will notice that medical methods are different to causal inference.
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Rate Ratios

1 Partition sample in groups G0,G1 you want to compare.

2 The cumulative times-at-risk of each group are

N0 =
∑
i∈G0

Ti and N1 =
∑
i∈G1

Ti .

3 Define fatality counting variables

P0 = #{i ∈ G0 : Yi = 1} and P1 = #{i ∈ G1 : Yi = 1}.

4 Assume

P0 ∼ Poisson(N0λ0) and P1 ∼ Poisson(N1λ1)

for fixed, but unknown λ0, λ1 > 0.
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Rate Ratios

5 We are interested in inference on the rate ratio

ξ = λ0

/
λ1.

6 Test H0 : ξ = 1 against H1 : ξ ̸= 1 by UMP test (e.g. Lehmann and
Romano, 1986).

7 If H0 is rejected, there is evidence for systematic mortality differences
between the two groups: means that treatment effect is different
between them.
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Rate Ratios

Rate ratios are also called “one-variable-at-a-time” analyses.

Heavily criticized by recent literature (Kent et al., 2020): e.g. low
power, multiplicity.

Nevertheless, still common method for HTE identification in medicine.

But: Literature admits that better methods are required (e.g. Kent
et al., 2020).

Welz, ten Haaf, Alfons CITRUS October 21, 2021 27 / 38



Predictive Risk Models

Risk models (Kent et al., 2020) are a two stage approach to identify HTE.

1 Stage 1: Fit logistic regression model (w/o treatment variable!)

log

(
P[Yi = 1|Xi ]

1− P[Yi = 1|Xi ]

)
= β0 + X⊤

i β

and calculate η̂i = β̂0 + X⊤
i β̂.

2 Stage 2: Fit the logistic regression model

log

(
P[Yi = 1|Xi ,Wi , η̂i ]

1− P[Yi = 1|Xi ,Wi , η̂i ]

)
= γ0 + γ1Wi + γ2η̂i + γ3η̂iWi .

3 Calculate predicted risk

riski (W ) = P̂[Yi = 1|Xi ,W , η̂i ].

Welz, ten Haaf, Alfons CITRUS October 21, 2021 28 / 38



Predictive Risk Models

log

(
P[Yi = 1|Xi ,Wi , η̂i ]

1− P[Yi = 1|Xi ,Wi , η̂i ]

)
= γ0 + γ1Wi + γ2η̂i + γ3η̂iWi .

Idea behind two stages: Separate the explanatory power for Yi into a
part that is due to Xi and a part due to Wi .

If treatment is effective, then H0 : γ1 = 0 should be rejected.

If there is heterogeneity, then H0 : γ3 = 0 should be rejected.

Predicted risk riski (W ) = P̂[Yi = 1|Xi ,W , η̂i ] can be used for HTE
identification (more on this later).
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Predictive Effect Models

Effect models (Kent et al., 2020) rely on variable selection to identify
heterogeneity.

1 Specify set I ⊆ {1, . . . , p} of covariates to interact W with.

2 Consider the logistic regression model

log

(
P[Yi = 1|Xi ,Wi ]

1− P[Yi = 1|Xi ,Wi ]

)
= β0 + X⊤

i β + γ0Wi +
∑
j∈I

γjWiXi ,j .

3 Fit the model using a regularization penalty on coefficient size (e.g.
elastic net; Zou and Hastie, 2005).

4 Calculate predicted risk

riski (W ) = P̂[Yi = 1|Xi ,W ].
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Predictive Effect Models

log

(
P[Yi = 1|Xi ,Wi ]

1− P[Yi = 1|Xi ,Wi ]

)
= β0 + X⊤

i β + γ0Wi +
∑
j∈I

γjWiXi ,j .

If treatment is effective, then Wi should be selected;

If there is heterogeneity along the variables in I, these variables
should be selected.

We recommend to use a regularization penalty akin to Bien et al.
(2013) to account for special hierarchical structure of interaction
effects.
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Obtaining HTE estimates

Given: Predicted risk riski (W ) in risk or effect model.

Goal: Estimate HTE τi = πi (1)− πi (0) to identify heterogeneity.

Define the reversed treatment assignment

W rev
i =

{
1 if Wi = 0;

0 if Wi = 1.

Estimate τi via

τ̂i =

{
riski (Wi )− riski (W

rev
i ) if Wi = 1,

riski (W
rev
i )− riski (Wi ) if Wi = 0.

Thereupon, one can obtain estimates of ATEG ,ARTEG .
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Outlook

In CITRUS, we point out problems. We do not (yet) propose
methodological solutions.
➔ Potential for many valuable novel contributions! For example,

Derive valid confidence intervals for risk model coefficients (2SLS
literature?)

Derive probability of selecting all correct variables in effect model
(build on Bien et al. (2013)?)

Derive valid confidence intervals for effect model coefficients (build on
Dezeure et al. (2015) and Van de Geer (2016)?)

Valid subgroup-level inference (build on Guo and He (2021)?)

Robustify regression (also in survival models!) (build on Lecué and
Lerasle (2020)?)
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Outlook

We might want to start working on some of these extensions in the future
(EUR and EMC plan to intensify their collaboration).

Let us know if you are interested!
(It’s fine if you are in AMS)
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Thank you for your attention! Any
questions?

Slides: https://mwelz.github.io/publications/ti2021.pdf
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