
Generic Machine Learning Inference on
Heterogeneous Treatment Effects Using the

Package GenericML

Max Welz1,2 Andreas Alfons1 Mert Demirer3
Victor Chernozhukov3

1Erasmus School of Economics, Erasmus University Rotterdam
2Erasmus University Medical Center (Erasmus MC)

3Massachusetts Institute of Technology

useR!, June 21, 2022

1 / 26

Motivation

Recent literature in causal inference is focused on heterogeneous
treatment effects

• Often based on Machine Learning (ML) techniques

• Goal: Consistent estimation and uniformly valid inference on
conditional average treatment effect (CATE)

−→ Difficult w/o strong assumptions, especially in high dimensions!

−→ Generic Machine Learning Inference (Generic ML; Chernozhukov,
Demirer, Duflo, and Fernández-Val, 2020) remedies this in
randomized experiments

2 / 26

Motivation

Recent literature in causal inference is focused on heterogeneous
treatment effects

• Often based on Machine Learning (ML) techniques

• Goal: Consistent estimation and uniformly valid inference on
conditional average treatment effect (CATE)

−→ Difficult w/o strong assumptions, especially in high dimensions!

−→ Generic Machine Learning Inference (Generic ML; Chernozhukov,
Demirer, Duflo, and Fernández-Val, 2020) remedies this in
randomized experiments

2 / 26

Motivation

Recent literature in causal inference is focused on heterogeneous
treatment effects

• Often based on Machine Learning (ML) techniques

• Goal: Consistent estimation and uniformly valid inference on
conditional average treatment effect (CATE)

−→ Difficult w/o strong assumptions, especially in high dimensions!

−→ Generic Machine Learning Inference (Generic ML; Chernozhukov,
Demirer, Duflo, and Fernández-Val, 2020) remedies this in
randomized experiments

2 / 26

Setup

Let

• Y be the outcome

• Z be a possibly high-dimensional vector of covariates

• D be a binary treatment assignment variable

−→ Observe (Yi ,Zi ,Di)N
i=1 as i.i.d. copies of (Y ,Z ,D)

−→ Assume unconfoundedness and random treatment assignment

3 / 26

A Very General Model

We consider the very general model

Y = b0(Z) + Ds0(Z) + U, E[U | Z ,D] = 0,

where

b0(Z) = E[Y | D = 0,Z]

is the baseline conditional average (BCA), and

s0(Z) = E[Y | D = 1,Z]− E[Y | D = 0,Z]

is the conditional average treatment effect (CATE)

4 / 26

A Very General Model

We consider the very general model

Y = b0(Z) + Ds0(Z) + U, E[U | Z ,D] = 0,

where

b0(Z) = E[Y | D = 0,Z]

is the baseline conditional average (BCA), and

s0(Z) = E[Y | D = 1,Z]− E[Y | D = 0,Z]

is the conditional average treatment effect (CATE)

4 / 26

A Very General Model

We consider the very general model

Y = b0(Z) + Ds0(Z) + U, E[U | Z ,D] = 0,

where

b0(Z) = E[Y | D = 0,Z]

is the baseline conditional average (BCA), and

s0(Z) = E[Y | D = 1,Z]− E[Y | D = 0,Z]

is the conditional average treatment effect (CATE)

4 / 26

Focus of Generic ML

Generic ML focuses on estimation and inference on

key features of s0(Z) rather than s0(Z) itself

−→ No need for consistent estimation of s0(Z) or b0(Z)!

5 / 26

Focus of Generic ML

Generic ML focuses on estimation and inference on

key features of s0(Z) rather than s0(Z) itself

−→ No need for consistent estimation of s0(Z) or b0(Z)!

5 / 26

Generic ML

1 Randomly partition the data in two disjoint sets A and M

2 On set A, use some machine learner to obtain estimates B(Z) and
S(Z) of b0(Z) and s0(Z), respectively

3 On set M, calculate the key features of s0(Z)

Two sources of uncertainty:

• Estimation uncertainty (conditional on set A) from Step 2

• Splitting uncertainty from the sample splitting in Step 1

−→ Address by repeating Steps 1–3 many times

6 / 26

Generic ML

1 Randomly partition the data in two disjoint sets A and M

2 On set A, use some machine learner to obtain estimates B(Z) and
S(Z) of b0(Z) and s0(Z), respectively

3 On set M, calculate the key features of s0(Z)

Two sources of uncertainty:

• Estimation uncertainty (conditional on set A) from Step 2

• Splitting uncertainty from the sample splitting in Step 1

−→ Address by repeating Steps 1–3 many times

6 / 26

Generic ML

1 Randomly partition the data in two disjoint sets A and M

2 On set A, use some machine learner to obtain estimates B(Z) and
S(Z) of b0(Z) and s0(Z), respectively

3 On set M, calculate the key features of s0(Z)

Two sources of uncertainty:

• Estimation uncertainty (conditional on set A) from Step 2

• Splitting uncertainty from the sample splitting in Step 1

−→ Address by repeating Steps 1–3 many times

6 / 26

Inference

Variational Estimation and Inference (VEIN):

• Fix significance level α ∈ (0, 0.5)

• Calculate the key features across S splits of the data

• Take medians across the S splits of each key feature parameter

−→ Inference on each key feature parameter with size control of level 2α

−→ Can be repeated for many machine learners (report the “best” one)

7 / 26

Software Implementation

Package GenericML (Welz, Alfons, Demirer, and Chernozhukov, 2022)

• CRAN: https://CRAN.R-project.org/package=GenericML

• GitHub: https://github.com/mwelz/GenericML

−→ Flexible, user-friendly, fast, object-oriented

−→ Based on mlr3 ecosystem of Lang et al. (2019)

8 / 26

https://CRAN.R-project.org/package=GenericML
https://github.com/mwelz/GenericML

Empirical Example: Setup

We revisit Crépon et al.’s (2015) study on the effects of microcredits1

−→ Sample: 162 villages in rural Morocco, divided into 81 similar pairs

−→ Randomly select one village in each pair and make microcredits
available for the residents

−→ Measure if total borrowing changes

1We thank Esther Duflo for making the data available to us
9 / 26

Empirical Example: Data

Household-level data on N = 5, 513 households

• Dependent variable Y : total volume of borrowing

• Treatment indicator D: 1 if household can access microcredits

• Covariates Z : 97 variables (after encoding), among which

−→ head_age_bl is age of household’s head

• Grouping variables:
−→ demi_paire is a factor of village membership
−→ vil_pair is a factor of village pair membership

10 / 26

Empirical Example: Loading Data

−→ The data are available on GitHub in repo "mwelz/GenericML"

−→ Slides and replication files are in the subfolder "slides" of this repo

R> ## load data, available in GitHub repo mwelz/GenericML
R> url_data <-
+ url(paste0(
+ "https://github.com/mwelz/GenericML/blob/main/slides",
+ "/data/morocco_preprocessed.Rdata?raw=true"
+))
R> load(url_data)

11 / 26

Empirical Example: Baseline Results

Crépon et al. (2015) find that microcredit availability has. . .

• low take-up (17% in treatment group)

• significant effect on total borrowing: ATE of MAD2 1,206
(p < 0.01)

−→ Use GenericML to investigate heterogeneity in this effect!

2MAD = Moroccan Dirham
12 / 26

Empirical Example: Specification of Learners

−→ Specify a suite of learners with mlr3 syntax

−→ Here: random forest, elastic net, support vector machine, gradient
boosting

R> # install version 0.2.3 which is not yet on CRAN
R> # devtools::install_github("mwelz/GenericML")
R> library("GenericML")
R>
R> # specify learners
R> learners <-
+ c("random_forest",
+ "mlr3::lrn('cv_glmnet', s = 'lambda.min', alpha = 0.5)",
+ "mlr3::lrn('svm')",
+ "mlr3::lrn('xgboost')")

13 / 26

Empirical Example: Specification of Learners

−→ Specify a suite of learners with mlr3 syntax

−→ Here: random forest, elastic net, support vector machine, gradient
boosting

R> # install version 0.2.3 which is not yet on CRAN
R> # devtools::install_github("mwelz/GenericML")
R> library("GenericML")
R>
R> # specify learners
R> learners <-
+ c("random_forest",
+ "mlr3::lrn('cv_glmnet', s = 'lambda.min', alpha = 0.5)",
+ "mlr3::lrn('svm')",
+ "mlr3::lrn('xgboost')")

13 / 26

Empirical Example: Customization

Spatial data of 81 village pairs

−→ Include fixed effects for each pair

−→ Cluster standard errors on the village level

−→ GenericML allows this through setup functions

−→ Support for sandwich covariance estimators (Zeileis, 2004)

14 / 26

Empirical Example: Customization

setup_X1() customizes inclusion of controls and fixed effects

R> # include BCA and CATE controls
R> # add fixed effects along variable "vil_pair"
R> X1 <- setup_X1(funs_Z = c("B", "S"),
+ fixed_effects = vil_pair)

setup_vcov() customizes covariance estimation

R> # calls functions from the "sandwich" package
R> # cluster standard errors along "demi_paire"
R> vcov <- setup_vcov(estimator = "vcovCL",
+ arguments = list(cluster = demi_paire))

15 / 26

Empirical Example: Customization

setup_X1() customizes inclusion of controls and fixed effects

R> # include BCA and CATE controls
R> # add fixed effects along variable "vil_pair"
R> X1 <- setup_X1(funs_Z = c("B", "S"),
+ fixed_effects = vil_pair)

setup_vcov() customizes covariance estimation

R> # calls functions from the "sandwich" package
R> # cluster standard errors along "demi_paire"
R> vcov <- setup_vcov(estimator = "vcovCL",
+ arguments = list(cluster = demi_paire))

15 / 26

Empirical Example: Customization

setup_X1() customizes inclusion of controls and fixed effects

R> # include BCA and CATE controls
R> # add fixed effects along variable "vil_pair"
R> X1 <- setup_X1(funs_Z = c("B", "S"),
+ fixed_effects = vil_pair)

setup_vcov() customizes covariance estimation

R> # calls functions from the "sandwich" package
R> # cluster standard errors along "demi_paire"
R> vcov <- setup_vcov(estimator = "vcovCL",
+ arguments = list(cluster = demi_paire))

15 / 26

Empirical Example: Customization

setup_X1() customizes inclusion of controls and fixed effects

R> # include BCA and CATE controls
R> # add fixed effects along variable "vil_pair"
R> X1 <- setup_X1(funs_Z = c("B", "S"),
+ fixed_effects = vil_pair)

setup_vcov() customizes covariance estimation

R> # calls functions from the "sandwich" package
R> # cluster standard errors along "demi_paire"
R> vcov <- setup_vcov(estimator = "vcovCL",
+ arguments = list(cluster = demi_paire))

15 / 26

GenericML Interface

R> genML <- GenericML(
+ Z = Z, D = D, Y = Y, # observed data
+ learners_GenericML = learners, # learners
+ learner_propensity_score = "constant", # = 0.5 (RCT)
+ num_splits = 100L, # number splits
+ quantile_cutoffs = c(0.2, 0.4, 0.6, 0.8), # grouping
+ significance_level = 0.05, # significance level
+ X1_BLP = X1, X1_GATES = X1, # regression setup
+ vcov_BLP = vcov, vcov_GATES = vcov, # covariance setup
+ parallel = TRUE, num_cores = 6L, # parallelization
+ seed = 20220621) # RNG seed

. . . and many more arguments for fine-tuning!

−→ stratified sampling, Horvitz-Thompson transformation. . .

16 / 26

GenericML Interface

R> genML <- GenericML(
+ Z = Z, D = D, Y = Y, # observed data
+ learners_GenericML = learners, # learners
+ learner_propensity_score = "constant", # = 0.5 (RCT)
+ num_splits = 100L, # number splits
+ quantile_cutoffs = c(0.2, 0.4, 0.6, 0.8), # grouping
+ significance_level = 0.05, # significance level
+ X1_BLP = X1, X1_GATES = X1, # regression setup
+ vcov_BLP = vcov, vcov_GATES = vcov, # covariance setup
+ parallel = TRUE, num_cores = 6L, # parallelization
+ seed = 20220621) # RNG seed

. . . and many more arguments for fine-tuning!

−→ stratified sampling, Horvitz-Thompson transformation. . .

16 / 26

Analysis of GenericML Objects

Methods for the analysis of the key features of CATE

• get_BLP()

• get_GATES()

• get_CLAN()

−→ linked to rich plot() and print() methods

17 / 26

Empirical Example: get_BLP()

Best Linear Predictor (BLP): Estimates some (β1, β2) via OLS:

• β1 = Es0(Z) is the ATE

• β2 6= 0 if there is heterogeneity in s0(Z) and S(Z) predicts it well

R> results_BLP <- get_BLP(genML, plot = TRUE)
R> results_BLP # print method
BLP generic targets

Estimate CI lower CI upper p value
beta.1 1113.50155 273.02645 1935.274 0.00945 **
beta.2 0.35315 -0.04384 0.698 0.08613 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Confidence level of confidence interval [CI lower, CI upper]: 90 %

18 / 26

Empirical Example: get_BLP()

Best Linear Predictor (BLP): Estimates some (β1, β2) via OLS:

• β1 = Es0(Z) is the ATE

• β2 6= 0 if there is heterogeneity in s0(Z) and S(Z) predicts it well

R> results_BLP <- get_BLP(genML, plot = TRUE)
R> results_BLP # print method
BLP generic targets

Estimate CI lower CI upper p value
beta.1 1113.50155 273.02645 1935.274 0.00945 **
beta.2 0.35315 -0.04384 0.698 0.08613 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Confidence level of confidence interval [CI lower, CI upper]: 90 %

18 / 26

Empirical Example: get_BLP()

Best Linear Predictor (BLP): Estimates some (β1, β2) via OLS:

• β1 = Es0(Z) is the ATE

• β2 6= 0 if there is heterogeneity in s0(Z) and S(Z) predicts it well

R> results_BLP <- get_BLP(genML, plot = TRUE)
R> results_BLP # print method
BLP generic targets

Estimate CI lower CI upper p value
beta.1 1113.50155 273.02645 1935.274 0.00945 **
beta.2 0.35315 -0.04384 0.698 0.08613 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Confidence level of confidence interval [CI lower, CI upper]: 90 %

18 / 26

Empirical Example: get_BLP()

R> plot(results_BLP) # plot method

0

500

1000

1500

2000

β1 (ATE) β2 (HTE)

BLP with 90% CI

Tr
ea

tm
en

t E
ffe

ct

VEIN of BLP

19 / 26

Empirical Example: get_GATES()

Sorted Group Average Treatment Effects (GATES): Build groups

Gk := {S(Z) ∈ Ik}, k = 1, . . . ,K ,

where Ik = [`k−1, `k) divide the support of S(Z) into regions

−→ Estimate group-ATE γk := E[s0(Z) | Gk] via OLS

20 / 26

Empirical Example: get_GATES()

R> results_GATES <- get_GATES(genML, plot = TRUE)
R> results_GATES
GATES generic targets

Estimate CI lower CI upper p value
gamma.1 -80.44 -2517.30 2097 0.93525
gamma.2 305.50 -674.10 1336 0.49251
gamma.3 725.63 -505.53 1932 0.19349
gamma.4 1744.51 395.93 3097 0.01225 *
gamma.5 2743.76 759.85 4940 0.00911 **
gamma.5-gamma.1 2922.13 -89.43 6087 0.05536 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Confidence level of confidence interval [CI lower, CI upper]: 90 %

21 / 26

Empirical Example: get_GATES()

R> plot(results_GATES)

−2500

0

2500

5000

G1 G2 G3 G4 G5 G5−G1
Group by HTE Score

Tr
ea

tm
en

t E
ffe

ct

90% CI (ATE) ATE GATES with 90% CI

VEIN of GATES

22 / 26

Empirical Example: get_CLAN()

Classification Analysis (CLAN): Observed within-group averages, δk , of a
variable for groups Gk

R> results_CLAN <-
+ get_CLAN(genML, variable = "head_age_bl", plot = TRUE)
R> results_CLAN
CLAN generic targets for variable 'head_age_bl'

Estimate CI lower CI upper p value
delta.1 36.49 34.46 38.554 < 2e-16 ***
delta.2 43.66 42.12 45.210 < 2e-16 ***
delta.3 41.40 39.50 43.258 < 2e-16 ***
delta.4 34.75 32.55 36.853 < 2e-16 ***
delta.5 23.85 21.53 26.151 < 2e-16 ***
delta.5-delta.1 -12.52 -15.61 -9.514 4.44e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Confidence level of confidence interval [CI lower, CI upper]: 90 %

23 / 26

Empirical Example: get_CLAN()

Classification Analysis (CLAN): Observed within-group averages, δk , of a
variable for groups Gk

R> results_CLAN <-
+ get_CLAN(genML, variable = "head_age_bl", plot = TRUE)
R> results_CLAN
CLAN generic targets for variable 'head_age_bl'

Estimate CI lower CI upper p value
delta.1 36.49 34.46 38.554 < 2e-16 ***
delta.2 43.66 42.12 45.210 < 2e-16 ***
delta.3 41.40 39.50 43.258 < 2e-16 ***
delta.4 34.75 32.55 36.853 < 2e-16 ***
delta.5 23.85 21.53 26.151 < 2e-16 ***
delta.5-delta.1 -12.52 -15.61 -9.514 4.44e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Confidence level of confidence interval [CI lower, CI upper]: 90 %

23 / 26

Empirical Example: get_CLAN()

R> plot(results_CLAN)

0

20

40

G1 G2 G3 G4 G5 G5−G1
Group by HTE Score

V
al

ue
 o

f '
he

ad
_a

ge
_b

l'

CLAN with 90% CI

VEIN of CLAN for variable 'head_age_bl'

24 / 26

Conclusions and Discussion

Conclusions
−→ High-dimensional uniformly valid inference on CATE is hard
−→ Generic ML can do so under minimal assumptions by focusing on

key features of CATE instead of CATE itself
−→ R package GenericML available on CRAN

Future work
−→ Implement monotonization of confidence bounds
−→ Enable support for deep learning, perhaps via mlr3keras

25 / 26

Conclusions and Discussion

Conclusions
−→ High-dimensional uniformly valid inference on CATE is hard
−→ Generic ML can do so under minimal assumptions by focusing on

key features of CATE instead of CATE itself
−→ R package GenericML available on CRAN

Future work
−→ Implement monotonization of confidence bounds
−→ Enable support for deep learning, perhaps via mlr3keras

25 / 26

References

Victor Chernozhukov, Mert Demirer, Esther Duflo, and Iván Fernández-Val. Generic Machine
Learning Inference on Heterogenous Treatment Effects in Randomized Experiments. arXiv
preprint: arXiv:1712.04802, 2020.

Bruno Crépon, Florencia Devoto, Esther Duflo, and William Parienté. Estimating the Impact
of Microcredit on Those Who Take It Up: Evidence from a Randomized Experiment in
Morocco. American Economic Journal: Applied Economics, 7(1):123–150, 2015.

Michel Lang, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors,
Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. mlr3: A Modern
Object-Oriented Machine Learning Framework in R. Journal of Open Source Software, 4
(44):1903, 2019.

Max Welz, Andreas Alfons, Mert Demirer, and Victor Chernozhukov. GenericML: Generic
Machine Learning Inference, 2022. URL
https://CRAN.R-project.org/package=GenericML. R package version 0.2.2.

Achim Zeileis. Econometric Computing with HC and HAC Covariance Matrix Estimators.
Journal of Statistical Software, 11(10):1–17, 2004.

26 / 26

https://CRAN.R-project.org/package=GenericML

Algorithm 1 in Chernozhukov et al. (2020)

IN: Data = (Yi ,Zi ,Di)N
i=1, significance level α, a suite of ML methods, number of

splits S
OUT: p-values and (1− 2α) confidence intervals of point estimates of each target

parameter in GATES, BLP, and CLAN

1 Compute propensity scores p(Zi), i = 1, . . . ,N
2 Do S splits of {1, . . . ,N} into disjoint sets A and M of same size
3 for each ML method and each split s = 1, . . . , S, do

a Tune and train each ML method to learn B(·) and S(·) on A
b On M, use B(·) and S(·) to estimate the BLP, GATES, CLAN target

parameters
c Compute some performance measures for the ML methods

4 Choose the best ML method based on the medians of the performance measures
5 Calculate the medians of the confidence bounds, p-values, and point estimates of

each target parameter
6 Adjust the confidence bounds and p-values

26 / 26

Best Learner

Compute two performance measures for each learner

Λ̂ = |β̂2|2 V̂ar(S(Z)), ̂̄Λ = 1
K

K∑
k=1

γ̂2k

−→ Best learner maximizes their median across S splits
−→ In the empirical example, that’s random forest (get via get_best())

26 / 26

