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Motivation

Recent literature in causal inference is focused on heterogeneous
treatment effects

• Often based on Machine Learning (ML) techniques

• Goal: Consistent estimation and uniformly valid inference on
conditional average treatment effect (CATE)

−→ Difficult w/o strong assumptions, especially in high dimensions!

−→ Generic Machine Learning Inference (Generic ML; Chernozhukov,
Demirer, Duflo, and Fernández-Val, 2020) remedies this in
randomized experiments
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Setup

Let

• Y be the outcome

• Z be a possibly high-dimensional vector of covariates

• D be a binary treatment assignment variable

−→ Observe (Yi ,Zi ,Di )N
i=1 as i.i.d. copies of (Y ,Z ,D)

−→ Assume unconfoundedness and random treatment assignment
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A Very General Model

We consider the very general model

Y = b0(Z ) + Ds0(Z ) + U, E[U | Z ,D] = 0,

where

b0(Z ) = E[Y | D = 0,Z ]

is the baseline conditional average (BCA), and

s0(Z ) = E[Y | D = 1,Z ]− E[Y | D = 0,Z ]

is the conditional average treatment effect (CATE)

4 / 26



A Very General Model

We consider the very general model

Y = b0(Z ) + Ds0(Z ) + U, E[U | Z ,D] = 0,

where

b0(Z ) = E[Y | D = 0,Z ]

is the baseline conditional average (BCA), and

s0(Z ) = E[Y | D = 1,Z ]− E[Y | D = 0,Z ]

is the conditional average treatment effect (CATE)

4 / 26



A Very General Model

We consider the very general model

Y = b0(Z ) + Ds0(Z ) + U, E[U | Z ,D] = 0,

where

b0(Z ) = E[Y | D = 0,Z ]

is the baseline conditional average (BCA), and

s0(Z ) = E[Y | D = 1,Z ]− E[Y | D = 0,Z ]

is the conditional average treatment effect (CATE)

4 / 26



Focus of Generic ML

Generic ML focuses on estimation and inference on

key features of s0(Z ) rather than s0(Z ) itself

−→ No need for consistent estimation of s0(Z ) or b0(Z )!
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Generic ML

1 Randomly partition the data in two disjoint sets A and M

2 On set A, use some machine learner to obtain estimates B(Z ) and
S(Z ) of b0(Z ) and s0(Z ), respectively

3 On set M, calculate the key features of s0(Z )

Two sources of uncertainty:

• Estimation uncertainty (conditional on set A) from Step 2

• Splitting uncertainty from the sample splitting in Step 1

−→ Address by repeating Steps 1–3 many times
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Inference

Variational Estimation and Inference (VEIN):

• Fix significance level α ∈ (0, 0.5)

• Calculate the key features across S splits of the data

• Take medians across the S splits of each key feature parameter

−→ Inference on each key feature parameter with size control of level 2α

−→ Can be repeated for many machine learners (report the “best” one)
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Software Implementation

Package GenericML (Welz, Alfons, Demirer, and Chernozhukov, 2022)

• CRAN: https://CRAN.R-project.org/package=GenericML

• GitHub: https://github.com/mwelz/GenericML

−→ Flexible, user-friendly, fast, object-oriented

−→ Based on mlr3 ecosystem of Lang et al. (2019)
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Empirical Example: Setup

We revisit Crépon et al.’s (2015) study on the effects of microcredits1

−→ Sample: 162 villages in rural Morocco, divided into 81 similar pairs

−→ Randomly select one village in each pair and make microcredits
available for the residents

−→ Measure if total borrowing changes

1We thank Esther Duflo for making the data available to us
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Empirical Example: Data

Household-level data on N = 5, 513 households

• Dependent variable Y : total volume of borrowing

• Treatment indicator D: 1 if household can access microcredits

• Covariates Z : 97 variables (after encoding), among which

−→ head_age_bl is age of household’s head

• Grouping variables:
−→ demi_paire is a factor of village membership
−→ vil_pair is a factor of village pair membership
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Empirical Example: Loading Data

−→ The data are available on GitHub in repo "mwelz/GenericML"

−→ Slides and replication files are in the subfolder "slides" of this repo

R> ## load data, available in GitHub repo mwelz/GenericML
R> url_data <-
+ url(paste0(
+ "https://github.com/mwelz/GenericML/blob/main/slides",
+ "/data/morocco_preprocessed.Rdata?raw=true"
+ ))
R> load(url_data)
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Empirical Example: Baseline Results

Crépon et al. (2015) find that microcredit availability has. . .

• low take-up (17% in treatment group)

• significant effect on total borrowing: ATE of MAD2 1,206
(p < 0.01)

−→ Use GenericML to investigate heterogeneity in this effect!

2MAD = Moroccan Dirham
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Empirical Example: Specification of Learners

−→ Specify a suite of learners with mlr3 syntax

−→ Here: random forest, elastic net, support vector machine, gradient
boosting

R> # install version 0.2.3 which is not yet on CRAN
R> # devtools::install_github("mwelz/GenericML")
R> library("GenericML")
R>
R> # specify learners
R> learners <-
+ c("random_forest",
+ "mlr3::lrn('cv_glmnet', s = 'lambda.min', alpha = 0.5)",
+ "mlr3::lrn('svm')",
+ "mlr3::lrn('xgboost')")
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Empirical Example: Customization

Spatial data of 81 village pairs

−→ Include fixed effects for each pair

−→ Cluster standard errors on the village level

−→ GenericML allows this through setup functions

−→ Support for sandwich covariance estimators (Zeileis, 2004)
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Empirical Example: Customization

setup_X1() customizes inclusion of controls and fixed effects

R> # include BCA and CATE controls
R> # add fixed effects along variable "vil_pair"
R> X1 <- setup_X1(funs_Z = c("B", "S"),
+ fixed_effects = vil_pair)

setup_vcov() customizes covariance estimation

R> # calls functions from the "sandwich" package
R> # cluster standard errors along "demi_paire"
R> vcov <- setup_vcov(estimator = "vcovCL",
+ arguments = list(cluster = demi_paire))
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GenericML Interface

R> genML <- GenericML(
+ Z = Z, D = D, Y = Y, # observed data
+ learners_GenericML = learners, # learners
+ learner_propensity_score = "constant", # = 0.5 (RCT)
+ num_splits = 100L, # number splits
+ quantile_cutoffs = c(0.2, 0.4, 0.6, 0.8), # grouping
+ significance_level = 0.05, # significance level
+ X1_BLP = X1, X1_GATES = X1, # regression setup
+ vcov_BLP = vcov, vcov_GATES = vcov, # covariance setup
+ parallel = TRUE, num_cores = 6L, # parallelization
+ seed = 20220621) # RNG seed

. . . and many more arguments for fine-tuning!

−→ stratified sampling, Horvitz-Thompson transformation. . .
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Analysis of GenericML Objects

Methods for the analysis of the key features of CATE

• get_BLP()

• get_GATES()

• get_CLAN()

−→ linked to rich plot() and print() methods
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Empirical Example: get_BLP()

Best Linear Predictor (BLP): Estimates some (β1, β2) via OLS:

• β1 = Es0(Z ) is the ATE

• β2 6= 0 if there is heterogeneity in s0(Z ) and S(Z ) predicts it well

R> results_BLP <- get_BLP(genML, plot = TRUE)
R> results_BLP # print method
BLP generic targets
---

Estimate CI lower CI upper p value
beta.1 1113.50155 273.02645 1935.274 0.00945 **
beta.2 0.35315 -0.04384 0.698 0.08613 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Confidence level of confidence interval [CI lower, CI upper]: 90 %
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Empirical Example: get_BLP()

R> plot(results_BLP) # plot method
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Empirical Example: get_GATES()

Sorted Group Average Treatment Effects (GATES): Build groups

Gk := {S(Z ) ∈ Ik}, k = 1, . . . ,K ,

where Ik = [`k−1, `k) divide the support of S(Z ) into regions

−→ Estimate group-ATE γk := E[s0(Z ) | Gk ] via OLS
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Empirical Example: get_GATES()

R> results_GATES <- get_GATES(genML, plot = TRUE)
R> results_GATES
GATES generic targets
---

Estimate CI lower CI upper p value
gamma.1 -80.44 -2517.30 2097 0.93525
gamma.2 305.50 -674.10 1336 0.49251
gamma.3 725.63 -505.53 1932 0.19349
gamma.4 1744.51 395.93 3097 0.01225 *
gamma.5 2743.76 759.85 4940 0.00911 **
gamma.5-gamma.1 2922.13 -89.43 6087 0.05536 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Confidence level of confidence interval [CI lower, CI upper]: 90 %
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Empirical Example: get_GATES()

R> plot(results_GATES)
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Empirical Example: get_CLAN()

Classification Analysis (CLAN): Observed within-group averages, δk , of a
variable for groups Gk

R> results_CLAN <-
+ get_CLAN(genML, variable = "head_age_bl", plot = TRUE)
R> results_CLAN
CLAN generic targets for variable 'head_age_bl'
---

Estimate CI lower CI upper p value
delta.1 36.49 34.46 38.554 < 2e-16 ***
delta.2 43.66 42.12 45.210 < 2e-16 ***
delta.3 41.40 39.50 43.258 < 2e-16 ***
delta.4 34.75 32.55 36.853 < 2e-16 ***
delta.5 23.85 21.53 26.151 < 2e-16 ***
delta.5-delta.1 -12.52 -15.61 -9.514 4.44e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Confidence level of confidence interval [CI lower, CI upper]: 90 %
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Empirical Example: get_CLAN()

R> plot(results_CLAN)
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Conclusions and Discussion

Conclusions
−→ High-dimensional uniformly valid inference on CATE is hard
−→ Generic ML can do so under minimal assumptions by focusing on

key features of CATE instead of CATE itself
−→ R package GenericML available on CRAN

Future work
−→ Implement monotonization of confidence bounds
−→ Enable support for deep learning, perhaps via mlr3keras
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Algorithm 1 in Chernozhukov et al. (2020)

IN: Data = (Yi ,Zi ,Di )N
i=1, significance level α, a suite of ML methods, number of

splits S
OUT: p-values and (1− 2α) confidence intervals of point estimates of each target

parameter in GATES, BLP, and CLAN

1 Compute propensity scores p(Zi ), i = 1, . . . ,N
2 Do S splits of {1, . . . ,N} into disjoint sets A and M of same size
3 for each ML method and each split s = 1, . . . , S, do

a Tune and train each ML method to learn B(·) and S(·) on A
b On M, use B(·) and S(·) to estimate the BLP, GATES, CLAN target

parameters
c Compute some performance measures for the ML methods

4 Choose the best ML method based on the medians of the performance measures
5 Calculate the medians of the confidence bounds, p-values, and point estimates of

each target parameter
6 Adjust the confidence bounds and p-values
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Best Learner

Compute two performance measures for each learner

Λ̂ = |β̂2|2 V̂ar(S(Z )), ̂̄Λ = 1
K

K∑
k=1

γ̂2k

−→ Best learner maximizes their median across S splits
−→ In the empirical example, that’s random forest (get via get_best())
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